-
5
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
6
-
-
33748998787
-
Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming
-
A. P. George and W. B. Powell. Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming. Machine learning, 65(1):167-198, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 167-198
-
-
George, A.P.1
Powell, W.B.2
-
7
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
IEEE
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580-587. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
10
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, 2015.
-
(2015)
Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84984824417
-
-
arXiv preprint arXiv:1603.09382
-
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic depth. arXiv preprint arXiv:1603.09382, 2016.
-
(2016)
Deep Networks with Stochastic Depth
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
-
14
-
-
84961087827
-
-
arXiv preprint arXiv:1504.01716
-
B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, R. Cheng-Yue, F. Mujica, A. Coates, et al. An empirical evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716, 2015.
-
(2015)
An Empirical Evaluation of Deep Learning on Highway Driving
-
-
Huval, B.1
Wang, T.2
Tandon, S.3
Kiske, J.4
Song, W.5
Pazhayampallil, J.6
Andriluka, M.7
Cheng-Yue, R.8
Mujica, F.9
Coates, A.10
-
19
-
-
34548480020
-
A method of solving a convex programming problem with convergence rate o (1/k2)
-
Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372-376, 1983.
-
(1983)
Soviet Mathematics Doklady
, vol.27
, pp. 372-376
-
-
Nesterov, Y.1
-
21
-
-
84947041871
-
Image net large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Image Net Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 2015. 6.
-
(2015)
International Journal of Computer Vision (IJCV)
, pp. 6
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
25
-
-
84964983441
-
-
arXiv preprint arXiv:1409.4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
26
-
-
84911198048
-
Deepface: Closing the gap to human-level performance in face verification
-
IEEE
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 1701-1708. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
27
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
|