-
2
-
-
9144268360
-
Empirical evaluation of data transformations and ranking statistics for microarray analysis
-
15479783
-
Qin LX, Kerr KF, Contributing Members of the Toxicogenomics Research ConsortiumEmpirical evaluation of data transformations and ranking statistics for microarray analysis. Nucleic acids research. 2004;32(18):5471–9. doi: 10.1093/nar/gkh866 15479783
-
(2004)
Nucleic acids research
, vol.32
, Issue.18
, pp. 5471-5479
-
-
Qin, L.X.1
Kerr, K.F.2
-
4
-
-
4344571581
-
Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
-
15327980
-
Breitling R, Armengaud P, Amtmann A, Herzyk P, Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS letters. 2004;573(1–3):83–92. doi: 10.1016/j.febslet.2004.07.055 15327980
-
(2004)
FEBS letters
, vol.573
, Issue.1-3
, pp. 83-92
-
-
Breitling, R.1
Armengaud, P.2
Amtmann, A.3
Herzyk, P.4
-
5
-
-
4544341015
-
Linear models and empirical bayes methods for assessing differential expression in microarray experiments
-
Smyth GK, Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology. 2005;3(1):1–25. doi: 10.2202/1544-6115.1027
-
(2005)
Statistical Applications in Genetics and Molecular Biology
, vol.3
, Issue.1
, pp. 1-25
-
-
Smyth, G.K.1
-
6
-
-
84874677498
-
A comparison of methods for differential expression analysis of RNA-seq data
-
23497356
-
Soneson C, Delorenzi M, A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14. doi: 10.1186/1471-2105-14-91 23497356
-
(2013)
BMC Bioinformatics
, vol.14
-
-
Soneson, C.1
Delorenzi, M.2
-
7
-
-
84883644707
-
Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
-
24020486
-
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D, Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology. 2013;14(9). doi: 10.1186/gb-2013-14-9-r95 24020486
-
(2013)
Genome Biology
, vol.14
, Issue.9
-
-
Rapaport, F.1
Khanin, R.2
Liang, Y.3
Pirun, M.4
Krek, A.5
Zumbo, P.6
Mason, C.E.7
Socci, N.D.8
Betel, D.9
-
8
-
-
84928199480
-
Comparison of software packages for detecting differential expression in RNA-seq studies
-
24300110
-
Seyednasrollah F, Laiho A, Elo LL, Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in Bioinformatics. 2015;16(1):59–70. doi: 10.1093/bib/bbt086 24300110
-
(2015)
Briefings in Bioinformatics
, vol.16
, Issue.1
, pp. 59-70
-
-
Seyednasrollah, F.1
Laiho, A.2
Elo, L.L.3
-
9
-
-
85037359221
-
Comparison of methods to detect differentially expressed genes between single-cell populations
-
February,:bbw057
-
Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL, Comparison of methods to detect differentially expressed genes between single-cell populations. Briefings in Bioinformatics. 2016;(February):bbw057. doi: 10.1093/bib/bbw057
-
(2016)
Briefings in Bioinformatics
-
-
Jaakkola, M.K.1
Seyednasrollah, F.2
Mehmood, A.3
Elo, L.L.4
-
10
-
-
49249093918
-
Reproducibility-optimized test statistic for ranking genes in microarray studies
-
Elo LL, Filén S, Lahesmaa R, Aittokallio T, Reproducibility-optimized test statistic for ranking genes in microarray studies. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM. 2008;5(3):423–31. doi: 10.1109/tcbb.2007.1078
-
(2008)
IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM
, vol.5
, Issue.3
, pp. 423-431
-
-
Elo, L.L.1
Filén, S.2
Lahesmaa, R.3
Aittokallio, T.4
-
11
-
-
84942845769
-
Optimization of Statistical Methods Impact on Quantitative Proteomics Data
-
26321463
-
Pursiheimo A, Vehmas AP, Afzal S, Suomi T, Chand T, Strauss L, et al. Optimization of Statistical Methods Impact on Quantitative Proteomics Data. Journal of Proteome Research. 2015;14(10):4118–4126. doi: 10.1021/acs.jproteome.5b00183 26321463
-
(2015)
Journal of Proteome Research
, vol.14
, Issue.10
, pp. 4118-4126
-
-
Pursiheimo, A.1
Vehmas, A.P.2
Afzal, S.3
Suomi, T.4
Chand, T.5
Strauss, L.6
-
12
-
-
84959452344
-
ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer
-
26264667
-
Seyednasrollah F, Rantanen K, Jaakkola P, Elo LL, ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic acids research. 2016;44(1):e1. doi: 10.1093/nar/gkv806 26264667
-
(2016)
Nucleic acids research
, vol.44
, Issue.1
, pp. e1
-
-
Seyednasrollah, F.1
Rantanen, K.2
Jaakkola, P.3
Elo, L.L.4
-
13
-
-
84929658087
-
Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues
-
25724911
-
Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng LY, Messner S, et al. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. Mol. Cell. Proteomics. 2015;14:1400–1410. doi: 10.1074/mcp.M114.044305 25724911
-
(2015)
Mol. Cell. Proteomics
, vol.14
, pp. 1400-1410
-
-
Bruderer, R.1
Bernhardt, O.M.2
Gandhi, T.3
Miladinović, S.M.4
Cheng, L.Y.5
Messner, S.6
-
14
-
-
76149142168
-
Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry
-
19921851
-
Tabb DL, Vega-Montoto L, Rudnick Pa, Variyath AM, Ham AJL, Bunk DM, et al. Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. Journal of proteome research. 2010;9(2):761–76. doi: 10.1021/pr9006365 19921851
-
(2010)
Journal of proteome research
, vol.9
, Issue.2
, pp. 761-776
-
-
Tabb, D.L.1
Vega-Montoto, L.2
Rudnick, P.3
Variyath, A.M.4
Ham, A.J.L.5
Bunk, D.M.6
-
15
-
-
76749122411
-
Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses
-
Rudnick PA, Clauser KR, Kilpatrick LE, Tchekhovskoi DV, Neta P, Blonder N, et al. Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses. Molecular & Cellular Proteomics. 2010;9(2):225–241. doi: 10.1074/mcp.M900223-MCP200
-
(2010)
Molecular & Cellular Proteomics
, vol.9
, Issue.2
, pp. 225-241
-
-
Rudnick, P.A.1
Clauser, K.R.2
Kilpatrick, L.E.3
Tchekhovskoi, D.V.4
Neta, P.5
Blonder, N.6
-
16
-
-
76649122499
-
Interlaboratory study characterizing a yeast performance standard for benchmarking LC-MS platform performance
-
Paulovich AG, Billheimer D, Ham AJL, Vega-Montoto L, Rudnick PA, Tabb DL, et al. Interlaboratory study characterizing a yeast performance standard for benchmarking LC-MS platform performance. Molecular & cellular proteomics: MCP. 2010;9(2):242–54. doi: 10.1074/mcp.M900222-MCP200
-
(2010)
Molecular & cellular proteomics: MCP
, vol.9
, Issue.2
, pp. 242-254
-
-
Paulovich, A.G.1
Billheimer, D.2
Ham, A.J.L.3
Vega-Montoto, L.4
Rudnick, P.A.5
Tabb, D.L.6
-
17
-
-
84920550975
-
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
-
25150838
-
SEQC/MAQC-III ConsortiumA comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nature biotechnology. 2014;32(9):903–14. doi: 10.1038/nbt.2957 25150838
-
(2014)
Nature biotechnology
, vol.32
, Issue.9
, pp. 903-914
-
-
-
18
-
-
80052521697
-
Synthetic spike-in standards for RNA-seq experiments
-
21816910
-
Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, et al. Synthetic spike-in standards for RNA-seq experiments. Genome research. 2011;21(9):1543–51. doi: 10.1101/gr.121095.111 21816910
-
(2011)
Genome research
, vol.21
, Issue.9
, pp. 1543-1551
-
-
Jiang, L.1
Schlesinger, F.2
Davis, C.A.3
Zhang, Y.4
Li, R.5
Salit, M.6
-
19
-
-
84896735766
-
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
24485249
-
Law CW, Chen Y, Shi W, Smyth GK, voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome biology. 2014;15(2):R29. doi: 10.1186/gb-2014-15-2-r29 24485249
-
(2014)
Genome biology
, vol.15
, Issue.2
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
20
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
20196867
-
Robinson MD, Oshlack A, A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology. 2010;11(3):R25. doi: 10.1186/gb-2010-11-3-r25 20196867
-
(2010)
Genome biology
, vol.11
, Issue.3
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
21
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England). 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
22
-
-
84858041341
-
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
-
22287627
-
McCarthy DJ, Chen Y, Smyth GK, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research. 2012;40(10):4288–97. doi: 10.1093/nar/gks042 22287627
-
(2012)
Nucleic acids research
, vol.40
, Issue.10
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
23
-
-
77958471357
-
Differential expression analysis for sequence count data
-
20979621
-
Anders S, Huber W, Differential expression analysis for sequence count data. Genome biology. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106 20979621
-
(2010)
Genome biology
, vol.11
, Issue.10
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
24
-
-
84958078627
-
The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing
-
26878113
-
Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nature immunology. 2016;17(4):451–460. doi: 10.1038/ni.3368 26878113
-
(2016)
Nature immunology
, vol.17
, Issue.4
, pp. 451-460
-
-
Björklund, ÅK.1
Forkel, M.2
Picelli, S.3
Konya, V.4
Theorell, J.5
Friberg, D.6
-
25
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
24836921
-
Kharchenko PV, Silberstein L, Scadden DT, Bayesian approach to single-cell differential expression analysis. Nature methods. 2014;11(7):740–2. doi: 10.1038/nmeth.2967 24836921
-
(2014)
Nature methods
, vol.11
, Issue.7
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
26
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
26653891
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome biology. 2015;16(1):278. doi: 10.1186/s13059-015-0844-5 26653891
-
(2015)
Genome biology
, vol.16
, Issue.1
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
|