메뉴 건너뛰기




Volumn 13, Issue 5, 2017, Pages

ROTS: An R package for reproducibility-optimized statistical testing

Author keywords

[No Author keywords available]

Indexed keywords

MASS SPECTROMETRY; MOLECULAR BIOLOGY; PROTEINS; STATISTICAL TESTS; STATISTICS;

EID: 85020112152     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1005562     Document Type: Article
Times cited : (98)

References (26)
  • 2
    • 9144268360 scopus 로고    scopus 로고
    • Empirical evaluation of data transformations and ranking statistics for microarray analysis
    • 15479783
    • Qin LX, Kerr KF, Contributing Members of the Toxicogenomics Research ConsortiumEmpirical evaluation of data transformations and ranking statistics for microarray analysis. Nucleic acids research. 2004;32(18):5471–9. doi: 10.1093/nar/gkh866 15479783
    • (2004) Nucleic acids research , vol.32 , Issue.18 , pp. 5471-5479
    • Qin, L.X.1    Kerr, K.F.2
  • 4
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • 15327980
    • Breitling R, Armengaud P, Amtmann A, Herzyk P, Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS letters. 2004;573(1–3):83–92. doi: 10.1016/j.febslet.2004.07.055 15327980
    • (2004) FEBS letters , vol.573 , Issue.1-3 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 5
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth GK, Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology. 2005;3(1):1–25. doi: 10.2202/1544-6115.1027
    • (2005) Statistical Applications in Genetics and Molecular Biology , vol.3 , Issue.1 , pp. 1-25
    • Smyth, G.K.1
  • 6
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • 23497356
    • Soneson C, Delorenzi M, A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14. doi: 10.1186/1471-2105-14-91 23497356
    • (2013) BMC Bioinformatics , vol.14
    • Soneson, C.1    Delorenzi, M.2
  • 8
    • 84928199480 scopus 로고    scopus 로고
    • Comparison of software packages for detecting differential expression in RNA-seq studies
    • 24300110
    • Seyednasrollah F, Laiho A, Elo LL, Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in Bioinformatics. 2015;16(1):59–70. doi: 10.1093/bib/bbt086 24300110
    • (2015) Briefings in Bioinformatics , vol.16 , Issue.1 , pp. 59-70
    • Seyednasrollah, F.1    Laiho, A.2    Elo, L.L.3
  • 9
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • February,:bbw057
    • Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL, Comparison of methods to detect differentially expressed genes between single-cell populations. Briefings in Bioinformatics. 2016;(February):bbw057. doi: 10.1093/bib/bbw057
    • (2016) Briefings in Bioinformatics
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 11
    • 84942845769 scopus 로고    scopus 로고
    • Optimization of Statistical Methods Impact on Quantitative Proteomics Data
    • 26321463
    • Pursiheimo A, Vehmas AP, Afzal S, Suomi T, Chand T, Strauss L, et al. Optimization of Statistical Methods Impact on Quantitative Proteomics Data. Journal of Proteome Research. 2015;14(10):4118–4126. doi: 10.1021/acs.jproteome.5b00183 26321463
    • (2015) Journal of Proteome Research , vol.14 , Issue.10 , pp. 4118-4126
    • Pursiheimo, A.1    Vehmas, A.P.2    Afzal, S.3    Suomi, T.4    Chand, T.5    Strauss, L.6
  • 12
    • 84959452344 scopus 로고    scopus 로고
    • ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer
    • 26264667
    • Seyednasrollah F, Rantanen K, Jaakkola P, Elo LL, ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic acids research. 2016;44(1):e1. doi: 10.1093/nar/gkv806 26264667
    • (2016) Nucleic acids research , vol.44 , Issue.1 , pp. e1
    • Seyednasrollah, F.1    Rantanen, K.2    Jaakkola, P.3    Elo, L.L.4
  • 13
    • 84929658087 scopus 로고    scopus 로고
    • Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues
    • 25724911
    • Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng LY, Messner S, et al. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. Mol. Cell. Proteomics. 2015;14:1400–1410. doi: 10.1074/mcp.M114.044305 25724911
    • (2015) Mol. Cell. Proteomics , vol.14 , pp. 1400-1410
    • Bruderer, R.1    Bernhardt, O.M.2    Gandhi, T.3    Miladinović, S.M.4    Cheng, L.Y.5    Messner, S.6
  • 14
    • 76149142168 scopus 로고    scopus 로고
    • Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry
    • 19921851
    • Tabb DL, Vega-Montoto L, Rudnick Pa, Variyath AM, Ham AJL, Bunk DM, et al. Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. Journal of proteome research. 2010;9(2):761–76. doi: 10.1021/pr9006365 19921851
    • (2010) Journal of proteome research , vol.9 , Issue.2 , pp. 761-776
    • Tabb, D.L.1    Vega-Montoto, L.2    Rudnick, P.3    Variyath, A.M.4    Ham, A.J.L.5    Bunk, D.M.6
  • 17
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • 25150838
    • SEQC/MAQC-III ConsortiumA comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nature biotechnology. 2014;32(9):903–14. doi: 10.1038/nbt.2957 25150838
    • (2014) Nature biotechnology , vol.32 , Issue.9 , pp. 903-914
  • 18
    • 80052521697 scopus 로고    scopus 로고
    • Synthetic spike-in standards for RNA-seq experiments
    • 21816910
    • Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, et al. Synthetic spike-in standards for RNA-seq experiments. Genome research. 2011;21(9):1543–51. doi: 10.1101/gr.121095.111 21816910
    • (2011) Genome research , vol.21 , Issue.9 , pp. 1543-1551
    • Jiang, L.1    Schlesinger, F.2    Davis, C.A.3    Zhang, Y.4    Li, R.5    Salit, M.6
  • 19
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • 24485249
    • Law CW, Chen Y, Shi W, Smyth GK, voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome biology. 2014;15(2):R29. doi: 10.1186/gb-2014-15-2-r29 24485249
    • (2014) Genome biology , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 20
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • 20196867
    • Robinson MD, Oshlack A, A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology. 2010;11(3):R25. doi: 10.1186/gb-2010-11-3-r25 20196867
    • (2010) Genome biology , vol.11 , Issue.3 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 21
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England). 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616
    • (2010) Bioinformatics (Oxford, England) , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 22
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • 22287627
    • McCarthy DJ, Chen Y, Smyth GK, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research. 2012;40(10):4288–97. doi: 10.1093/nar/gks042 22287627
    • (2012) Nucleic acids research , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 23
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • 20979621
    • Anders S, Huber W, Differential expression analysis for sequence count data. Genome biology. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106 20979621
    • (2010) Genome biology , vol.11 , Issue.10 , pp. R106
    • Anders, S.1    Huber, W.2
  • 24
    • 84958078627 scopus 로고    scopus 로고
    • The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing
    • 26878113
    • Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nature immunology. 2016;17(4):451–460. doi: 10.1038/ni.3368 26878113
    • (2016) Nature immunology , vol.17 , Issue.4 , pp. 451-460
    • Björklund, ÅK.1    Forkel, M.2    Picelli, S.3    Konya, V.4    Theorell, J.5    Friberg, D.6
  • 25
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • 24836921
    • Kharchenko PV, Silberstein L, Scadden DT, Bayesian approach to single-cell differential expression analysis. Nature methods. 2014;11(7):740–2. doi: 10.1038/nmeth.2967 24836921
    • (2014) Nature methods , vol.11 , Issue.7 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 26
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • 26653891
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome biology. 2015;16(1):278. doi: 10.1186/s13059-015-0844-5 26653891
    • (2015) Genome biology , vol.16 , Issue.1 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.