-
1
-
-
84886035850
-
Meiotic recombination in mammals: Localization and regulation
-
Baudat, F., Imai, Y., & de Massy, B. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794-806 (2013).
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 794-806
-
-
Baudat, F.1
Imai, Y.2
De Massy, B.3
-
2
-
-
33847403015
-
Recent advances in plant recombination
-
Li, J., Hsia, A.-P., & Schnable, P. S. Recent advances in plant recombination. Curr. Opin. Plant Biol. 10, 131-135 (2007).
-
(2007)
Curr. Opin. Plant Biol.
, vol.10
, pp. 131-135
-
-
Li, J.1
Hsia, A.-P.2
Schnable, P.S.3
-
3
-
-
79953796527
-
Homologous recombination in plants: An antireview
-
Lieberman-Lazarovich, M., & Levy, A. A. Homologous recombination in plants: an antireview. Methods Mol. Biol. 701, 51-65 (2011).
-
(2011)
Methods Mol. Biol.
, vol.701
, pp. 51-65
-
-
Lieberman-Lazarovich, M.1
Levy, A.A.2
-
4
-
-
84903757525
-
Sources of DNA double-strand breaks and models of recombinational DNA repair
-
Mehta, A., & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, a016428 (2014).
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
, pp. a016428
-
-
Mehta, A.1
Haber, J.E.2
-
5
-
-
84944627294
-
-
Springer, New York, NY, USA
-
Puchta, H., & Fauser, F. in Advances in New Technology for Targeted Modification of Plant Genomes. 1-20 (Springer, New York, NY, USA, 2015).
-
(2015)
Advances in New Technology for Targeted Modification of Plant Genomes.
, pp. 1-20
-
-
Puchta, H.1
Fauser, F.2
-
6
-
-
84901046953
-
Signaling of double strand breaks and deprotected telomeres in Arabidopsis
-
Amiard, S., Gallego, M. E., & White, C. I. Signaling of double strand breaks and deprotected telomeres in Arabidopsis. Front. Plant Sci. 4, 405 (2013).
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 405
-
-
Amiard, S.1
Gallego, M.E.2
White, C.I.3
-
7
-
-
29244475344
-
Recent advances in understanding of the DNA double-strand break repair machinery of plants
-
Bleuyard, J.-Y., Gallego, M. E., & White, C. I. Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair 5, 1-12 (2006).
-
(2006)
DNA Repair
, vol.5
, pp. 1-12
-
-
Bleuyard, J.-Y.1
Gallego, M.E.2
White, C.I.3
-
8
-
-
84876161358
-
Alternative end-joining mechanisms: A historical perspective
-
Decottignies, A. Alternative end-joining mechanisms: a historical perspective. Front. Genet. 4, 48 (2013).
-
(2013)
Front. Genet.
, vol.4
, pp. 48
-
-
Decottignies, A.1
-
9
-
-
0033057606
-
How plants make ends meet: DNA double-strand break repair
-
Gorbunova, V., & Levy, A. How plants make ends meet: DNA double-strand break repair. Trends Plant Sci. 4, 263-269 (1999).
-
(1999)
Trends Plant Sci.
, vol.4
, pp. 263-269
-
-
Gorbunova, V.1
Levy, A.2
-
10
-
-
11444267813
-
The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution
-
Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1-14 (2005).
-
(2005)
J. Exp. Bot.
, vol.56
, pp. 1-14
-
-
Puchta, H.1
-
11
-
-
79952341174
-
Have a break: Determinants of meiotic DNA double strand break (DSB) formation and processing in plants
-
Edlinger, B., & Schlögelhofer, P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. J. Exp. Bot. 62, 1545-1563 (2011).
-
(2011)
J. Exp. Bot.
, vol.62
, pp. 1545-1563
-
-
Edlinger, B.1
Schlögelhofer, P.2
-
12
-
-
84928898942
-
The molecular biology of meiosis in plants
-
Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N., & Grelon, M. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297-327 (2015).
-
(2015)
Annu. Rev. Plant Biol.
, vol.66
, pp. 297-327
-
-
Mercier, R.1
Mézard, C.2
Jenczewski, E.3
Macaisne, N.4
Grelon, M.5
-
13
-
-
0029946668
-
Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination
-
Puchta, H., Dujon, B., & Hohn, B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl Acad. Sci. USA 93, 5055-5060 (1996).
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 5055-5060
-
-
Puchta, H.1
Dujon, B.2
Hohn, B.3
-
14
-
-
0030749948
-
The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence
-
Shalev, G., & Levy, A. A. The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence. Genetics 146, 1143-1151 (1997).
-
(1997)
Genetics
, vol.146
, pp. 1143-1151
-
-
Shalev, G.1
Levy, A.A.2
-
15
-
-
78249245697
-
Nontransgenic genome modification in plant cells
-
Marton, I., et al. Nontransgenic genome modification in plant cells. Plant Physiol. 154, 1079-1087 (2010).
-
(2010)
Plant Physiol.
, vol.154
, pp. 1079-1087
-
-
Marton, I.1
-
16
-
-
79960064013
-
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
-
Cermak, T., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. e82
-
-
Cermak, T.1
-
17
-
-
84922910242
-
Genome editing in rice and wheat using the CRISPR/Cas system
-
Shan, Q., Wang, Y., Li, J., & Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410 (2014).
-
(2014)
Nat. Protoc.
, vol.9
, pp. 2395-2410
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Gao, C.4
-
18
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
Fauser, F., Schiml, S., & Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359 (2014).
-
(2014)
Plant J.
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
19
-
-
84916624400
-
The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
-
Schiml, S., Fauser, F., & Puchta, H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80, 1139-1150 (2014).
-
(2014)
Plant J.
, vol.80
, pp. 1139-1150
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
20
-
-
84979703446
-
Geminivirusmediated genome editing in potato (Solanum tuberosum L) using sequencespecific nucleases
-
Butler, N. M., Baltes, N. J., Voytas, D. F., & Douches, D. S. Geminivirusmediated genome editing in potato (Solanum tuberosum L) using sequencespecific nucleases. Front. Plant Sci. 7, 1045 (2016).
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1045
-
-
Butler, N.M.1
Baltes, N.J.2
Voytas, D.F.3
Douches, D.S.4
-
21
-
-
0030813154
-
Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions
-
Gorbunova, V., & Levy, A. A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25, 4650-4657 (1997).
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 4650-4657
-
-
Gorbunova, V.1
Levy, A.A.2
-
22
-
-
84863286761
-
Single molecule PCR reveals similar patterns of nonhomologous DSB repair in tobacco and arabidopsis
-
Lloyd, A. H., et al. Single molecule PCR reveals similar patterns of nonhomologous DSB repair in tobacco and arabidopsis. PLoS ONE 7, e32255 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e32255
-
-
Lloyd, A.H.1
-
23
-
-
79957832472
-
Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis
-
Charbonnel, C., Allain, E., Gallego, M. E., & White, C. I. Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair 10, 611-619 (2011).
-
(2011)
DNA Repair
, vol.10
, pp. 611-619
-
-
Charbonnel, C.1
Allain, E.2
Gallego, M.E.3
White, C.I.4
-
24
-
-
85009143841
-
CRISPR/Cas9 platforms for genome editing in plants: Developments and applications
-
Ma, X., Zhu, Q., Chen, Y., & Liu, Y.-G. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant 9, 961-974 (2016).
-
(2016)
Mol. Plant
, vol.9
, pp. 961-974
-
-
Ma, X.1
Zhu, Q.2
Chen, Y.3
Liu, Y.-G.4
-
25
-
-
84908584019
-
Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 system
-
Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 system. Plant Physiol. 166, 1292-1297 (2014).
-
(2014)
Plant Physiol.
, vol.166
, pp. 1292-1297
-
-
Brooks, C.1
Nekrasov, V.2
Lippman, Z.B.3
Van Eck, J.4
-
26
-
-
84946416320
-
High-frequency, precise modification of the tomato genome
-
Cermák, T., et al. High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 232
-
-
Cermák, T.1
-
27
-
-
0029167734
-
Induction of intrachromosomal homologous recombination in whole plants
-
Puchta, H., Swoboda, P., & Hohn, B. Induction of intrachromosomal homologous recombination in whole plants. Plant J. 7, 203-210 (1995).
-
(1995)
Plant J.
, vol.7
, pp. 203-210
-
-
Puchta, H.1
Swoboda, P.2
Hohn, B.3
-
28
-
-
0141681133
-
Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome
-
Orel, N., Kyryk, A., & Puchta, H. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35, 604-612 (2003).
-
(2003)
Plant J.
, vol.35
, pp. 604-612
-
-
Orel, N.1
Kyryk, A.2
Puchta, H.3
-
29
-
-
1042279123
-
Interchromatid and interhomolog recombination in arabidopsis Thaliana
-
Molinier, J., Ries, G., Bonhoeffer, S., & Hohn, B. Interchromatid and interhomolog recombination in Arabidopsis thaliana. Plant Cell 16, 342-352 (2004).
-
(2004)
Plant Cell
, vol.16
, pp. 342-352
-
-
Molinier, J.1
Ries, G.2
Bonhoeffer, S.3
Hohn, B.4
-
30
-
-
0030875861
-
Abortive gap repair: Underlying mechanism for Ds element formation
-
Rubin, E., & Levy, A. A. Abortive gap repair: underlying mechanism for Ds element formation. Mol. Cell. Biol. 17, 6294-6302 (1997).
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 6294-6302
-
-
Rubin, E.1
Levy, A.A.2
-
31
-
-
0032779205
-
Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells
-
Puchta, H., et al. Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152, 1173-1181 (1999).
-
(1999)
Genetics
, vol.152
, pp. 1173-1181
-
-
Puchta, H.1
-
32
-
-
0025726170
-
Ac induces homologous recombination at the maize P locus
-
Athma, P., & Peterson, T. Ac induces homologous recombination at the maize P locus. Genetics 128, 163-173 (1991).
-
(1991)
Genetics
, vol.128
, pp. 163-173
-
-
Athma, P.1
Peterson, T.2
-
33
-
-
0026784957
-
Active mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication
-
Lowe, B., Mathern, J., & Hake, S. Active mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication. Genetics 132, 813-822 (1992).
-
(1992)
Genetics
, vol.132
, pp. 813-822
-
-
Lowe, B.1
Mathern, J.2
Hake, S.3
-
34
-
-
2642710921
-
Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome
-
Dooner, H. K., & Mart?nez-Férez, I. M. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9, 1633-1646 (1997).
-
(1997)
Plant Cell
, vol.9
, pp. 1633-1646
-
-
Dooner, H.K.1
Martnez-Férez, I.M.2
-
35
-
-
82755170646
-
Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number
-
Rosu, S., et al. Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number. Science 334, 1286-1289 (2011).
-
(2011)
Science
, vol.334
, pp. 1286-1289
-
-
Rosu, S.1
-
36
-
-
0030481854
-
P-element-induced male recombination and gene conversion in Drosophila
-
Preston, C. R., & Engels, W. R. P-element-induced male recombination and gene conversion in Drosophila. Genetics 144, 1611-1622 (1996).
-
(1996)
Genetics
, vol.144
, pp. 1611-1622
-
-
Preston, C.R.1
Engels, W.R.2
-
37
-
-
84896717088
-
Is Non-homologous end-joining really an inherently errorprone process?
-
Bétermier, M., et al. Is Non-homologous end-joining really an inherently errorprone process? PLoS Genet. 10, e1004086 (2014).
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004086
-
-
Bétermier, M.1
-
38
-
-
84903579362
-
Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid
-
Vu, G. T. H., et al. Repair of site-specific dna double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell 26, 2156-2167 (2014).
-
(2014)
Plant Cell
, vol.26
, pp. 2156-2167
-
-
Vu, G.T.H.1
-
39
-
-
84869232168
-
Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by ciscarotenoids
-
Kachanovsky, D. E., Filler, S., Isaacson, T., & Hirschberg, J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by ciscarotenoids. Proc. Natl Acad. Sci. USA 109, 19021-19026 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 19021-19026
-
-
Kachanovsky, D.E.1
Filler, S.2
Isaacson, T.3
Hirschberg, J.4
-
40
-
-
0036846180
-
The role of double-strand break-induced allelic homologous recombination in somatic plant cells
-
Gisler, B., Salomon, S., & Puchta, H. The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant J. 32, 277-284 (2002).
-
(2002)
Plant J.
, vol.32
, pp. 277-284
-
-
Gisler, B.1
Salomon, S.2
Puchta, H.3
-
41
-
-
0016274162
-
Somatic variations on a yellow mutant in Nicotiana tabacum L a1+/a1a2+/a2) i Non-reciprocal genetic events occurring in leaf cells
-
Dulieu, H. L. Somatic variations on a yellow mutant in Nicotiana tabacum L. (a1+/a1a2+/a2) I. Non-reciprocal genetic events occurring in leaf cells. Mutat. Res. Mol. Mech. Mutagen. 25, 289-304 (1974).
-
(1974)
Mutat. Res. Mol. Mech. Mutagen.
, vol.25
, pp. 289-304
-
-
Dulieu, H.L.1
-
42
-
-
84974133693
-
Mitotic crossing-over in a higher plant
-
Carlson, P. S. Mitotic crossing-over in a higher plant. Genet. Res. 24, 109-112 (2016).
-
(2016)
Genet. Res.
, vol.24
, pp. 109-112
-
-
Carlson, P.S.1
-
43
-
-
18044364481
-
Two meiotic crossover classes cohabit in arabidopsis: One is dependent on MER3, whereas the other one is not
-
Mercier, R., et al. Two meiotic crossover classes cohabit in arabidopsis: one is dependent on MER3, whereas the other one is not. Curr. Biol. 15, 692-701 (2005).
-
(2005)
Curr. Biol.
, vol.15
, pp. 692-701
-
-
Mercier, R.1
-
44
-
-
84888236250
-
Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots
-
Drouaud, J., et al. Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet. 9, e1003922 (2013).
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003922
-
-
Drouaud, J.1
-
45
-
-
0028221221
-
Fineresolution mapping of spontaneous and double-strand break-induced gene conversion tracts in saccharomyces cerevisiae reveals reversible mitotic conversion polarity
-
Sweetser, D. B., Hough, H., Whelden, J. F., Arbuckle, M., & Nickoloff, J. A. Fineresolution mapping of spontaneous and double-strand break-induced gene conversion tracts in saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell Biol. 14, 3863-3875 (1994).
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 3863-3875
-
-
Sweetser, D.B.1
Hough, H.2
Whelden, J.F.3
Arbuckle, M.4
Nickoloff, J.A.5
-
46
-
-
84906791314
-
Frequent Interchromosomal template switches during gene conversion in S cerevisiae
-
Tsaponina, O., & Haber, J. E. Frequent Interchromosomal template switches during gene conversion in S. cerevisiae. Mol. Cell 55, 615-625 (2014).
-
(2014)
Mol. Cell
, vol.55
, pp. 615-625
-
-
Tsaponina, O.1
Haber, J.E.2
-
47
-
-
0034523060
-
A new hyperrecombinogenic mutant of Nicotiana tabacum
-
Gorbunova, V., et al. A new hyperrecombinogenic mutant of Nicotiana tabacum. Plant J. 24, 601-611 (2000).
-
(2000)
Plant J.
, vol.24
, pp. 601-611
-
-
Gorbunova, V.1
-
48
-
-
85027948074
-
Comparative assessments of CRISPR-Cas nucleases cleavage efficiency in planta
-
Johnson, R. A., Gurevich, V., Filler, S., Samach, A., & Levy, A. A. Comparative assessments of CRISPR-Cas nucleases? cleavage efficiency in planta. Plant Mol. Biol. 87, 143-156 (2015).
-
(2015)
Plant Mol. Biol.
, vol.87
, pp. 143-156
-
-
Johnson, R.A.1
Gurevich, V.2
Filler, S.3
Samach, A.4
Levy, A.A.5
-
49
-
-
0025375909
-
U6 snRNA genes of arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase ll-Transcribed U-snRNA genes
-
Waibel, F., & Filipowicz, W. U6 snRNA genes of arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase ll-Transcribed U-snRNA genes. Nucleic Acids Res. 18, 3451-3458 (1990).
-
(1990)
Nucleic Acids Res.
, vol.18
, pp. 3451-3458
-
-
Waibel, F.1
Filipowicz, W.2
-
50
-
-
33947612596
-
Varied transcriptional efficiencies of multiple arabidopsis u6 small nuclear RNA genes
-
Li, X., Jiang, D., Yong, K., & Zhang, D. Varied Transcriptional Efficiencies of Multiple Arabidopsis U6 Small Nuclear RNA Genes. J. Integr. Plant Biol. 49, 222-229 (2007).
-
(2007)
J. Integr. Plant Biol.
, vol.49
, pp. 222-229
-
-
Li, X.1
Jiang, D.2
Yong, K.3
Zhang, D.4
-
52
-
-
79960051013
-
Goldenbraid: An iterative cloning system for standardized assembly of reusable genetic modules
-
Sarrion-Perdigones, A., et al. Goldenbraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE 6, e21622 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e21622
-
-
Sarrion-Perdigones, A.1
-
53
-
-
84875207585
-
High-Throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states
-
Blecher-Gonen, R., et al. High-Throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat. Protoc. 8, 539-554 (2013).
-
(2013)
Nat. Protoc.
, vol.8
, pp. 539-554
-
-
Blecher-Gonen, R.1
|