메뉴 건너뛰기




Volumn 130, Issue 8, 2017, Pages 1735-1752

Optimization of multi-environment trials for genomic selection based on crop models

Author keywords

[No Author keywords available]

Indexed keywords

CROPS; FORECASTING; GENES;

EID: 85019541505     PISSN: 00405752     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00122-017-2922-4     Document Type: Article
Times cited : (41)

References (67)
  • 1
    • 85024109473 scopus 로고    scopus 로고
    • Céréales, France
    • Agreste (2016) Produits agroalimentaires. Céréales. France. http://agreste.agriculture.gouv.fr/IMG/pdf/Gaf16p122.pdf. Accessed 19 April 2017
    • (2016) Produits agroalimentaires
  • 3
    • 34247885866 scopus 로고    scopus 로고
    • A worldwide bread wheat core collection arrayed in a 384-well plate
    • PID: 17318494
    • Balfourier F, Roussel V, Strelchenko P et al (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275. doi:10.1007/s00122-007-0517-1
    • (2007) Theor Appl Genet , vol.114 , pp. 1265-1275
    • Balfourier, F.1    Roussel, V.2    Strelchenko, P.3
  • 4
    • 77649261255 scopus 로고    scopus 로고
    • Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits
    • COI: 1:CAS:528:DC%2BC3cXis1WnsL0%3D, PID: 20038518
    • Bertin N, Martre P, Genard M et al (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967. doi:10.1093/jxb/erp377
    • (2010) J Exp Bot , vol.61 , pp. 955-967
    • Bertin, N.1    Martre, P.2    Genard, M.3
  • 5
    • 84913570681 scopus 로고    scopus 로고
    • Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model
    • COI: 1:CAS:528:DC%2BC2MXis12ru7Y%3D, PID: 25148833
    • Bogard M, Ravel C, Paux E et al (2014) Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J Exp Bot 65:5849–5865. doi:10.1093/jxb/eru328
    • (2014) J Exp Bot , vol.65 , pp. 5849-5865
    • Bogard, M.1    Ravel, C.2    Paux, E.3
  • 6
    • 0035139373 scopus 로고    scopus 로고
    • Simplifying Sirius: sensitivity analysis and development of a meta-model for wheat yield prediction
    • Brooks RJ, Semenov MA, Jamieson PD (2001) Simplifying Sirius: sensitivity analysis and development of a meta-model for wheat yield prediction. Eur J Agron 14:43–60. doi:10.1016/S1161-0301(00)00089-7
    • (2001) Eur J Agron , vol.14 , pp. 43-60
    • Brooks, R.J.1    Semenov, M.A.2    Jamieson, P.D.3
  • 7
    • 84856866301 scopus 로고    scopus 로고
    • Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers
    • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707. doi:10.2135/cropsci2011.06.0299
    • (2012) Crop Sci , vol.52 , pp. 707
    • Burgueño, J.1    de los Campos, G.2    Weigel, K.3    Crossa, J.4
  • 8
    • 84957633718 scopus 로고    scopus 로고
    • Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics
    • Yin X, Struik PC, (eds), Springer International Publishing, Cham
    • Bustos-Korts D, Malosetti M, Chapman S, van Eeuwijk F (2016) Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics. In: Yin X, Struik PC (eds) Crop systems biology. Springer International Publishing, Cham, pp 55–82
    • (2016) Crop systems biology , pp. 55-82
    • Bustos-Korts, D.1    Malosetti, M.2    Chapman, S.3    van Eeuwijk, F.4
  • 9
    • 84925507669 scopus 로고    scopus 로고
    • On the design of field experiments with correlated treatment effects
    • Butler DG, Smith AB, Cullis BR (2014) On the design of field experiments with correlated treatment effects. J Agric Biol Anviron Stat 19:541–557. doi:10.1007/s13253-014-0191-0
    • (2014) J Agric Biol Anviron Stat , vol.19 , pp. 541-557
    • Butler, D.G.1    Smith, A.B.2    Cullis, B.R.3
  • 10
    • 0036212932 scopus 로고    scopus 로고
    • Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments
    • Chapman SC, Cooper M, Hammer GL (2002) Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Aust J Agric Res 53:379–389. doi:10.1071/AR01070
    • (2002) Aust J Agric Res , vol.53 , pp. 379-389
    • Chapman, S.C.1    Cooper, M.2    Hammer, G.L.3
  • 11
    • 38849104939 scopus 로고    scopus 로고
    • Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize
    • PID: 18088328
    • Chenu K, Chapman SC, Hammer GL et al (2008) Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell Environ 31:378–391. doi:10.1111/j.1365-3040.2007.01772.x
    • (2008) Plant Cell Environ , vol.31 , pp. 378-391
    • Chenu, K.1    Chapman, S.C.2    Hammer, G.L.3
  • 12
    • 79952849576 scopus 로고    scopus 로고
    • Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia
    • COI: 1:CAS:528:DC%2BC3MXjsFyis7w%3D, PID: 21421705
    • Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer F, Chapman SC (2011) Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62:1743–1755. doi:10.1093/jxb/erq459
    • (2011) J Exp Bot , vol.62 , pp. 1743-1755
    • Chenu, K.1    Cooper, M.2    Hammer, G.L.3    Mathews, K.L.4    Dreccer, F.5    Chapman, S.C.6
  • 13
    • 84971500891 scopus 로고    scopus 로고
    • Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial
    • Cooper M, Technow F, Messina C, Gho C, Totir LR (2016) Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial. Crop Sci 56:1–16. doi:10.2135/cropsci2015.08.0512
    • (2016) Crop Sci , vol.56 , pp. 1-16
    • Cooper, M.1    Technow, F.2    Messina, C.3    Gho, C.4    Totir, L.R.5
  • 14
    • 84984824772 scopus 로고    scopus 로고
    • Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat
    • Crossa J, de los Campos G, Maccaferri M et al (2015) Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 5:2193–2209. doi:10.2135/cropsci2015.04.0260
    • (2015) Crop Sci , vol.5 , pp. 2193-2209
    • Crossa, J.1    de los Campos, G.2    Maccaferri, M.3
  • 15
    • 54449097329 scopus 로고    scopus 로고
    • Accuracy of predicting the genetic risk of disease using a genome-wide approach
    • PID: 18852893
    • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395. doi:10.1371/journal.pone.0003395
    • (2008) PLoS One , vol.3
    • Daetwyler, H.D.1    Villanueva, B.2    Woolliams, J.A.3
  • 16
    • 84887889664 scopus 로고    scopus 로고
    • Parameter identification of the STICS crop model, using an accelerated formal MCMC approach
    • Dumont B, Leemans V, Mansouri M et al (2014) Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environ Model Softw 52:121–135. doi:10.1016/j.envsoft.2013.10.022
    • (2014) Environ Model Softw , vol.52 , pp. 121-135
    • Dumont, B.1    Leemans, V.2    Mansouri, M.3
  • 17
    • 37249083895 scopus 로고    scopus 로고
    • The impact of genetic relationship information on genome-assisted breeding values
    • Habier D, Fernando RL, Dekkers JCM (2008) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397. doi:10.1534/genetics.107.081190
    • (2008) Genetics , vol.177 , pp. 2389-2397
    • Habier, D.1    Fernando, R.L.2    Dekkers, J.C.M.3
  • 19
    • 0036915801 scopus 로고    scopus 로고
    • Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement
    • Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agron 18:15–31. doi:10.1016/S1161-0301(02)00093-X
    • (2002) Eur J Agron , vol.18 , pp. 15-31
    • Hammer, G.L.1    Kropff, M.J.2    Sinclair, T.R.3    Porter, J.R.4
  • 20
    • 84863630362 scopus 로고    scopus 로고
    • Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat
    • He J, Le Gouis J, Stratonovitch P et al (2012) Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. Eur J Agron 42:22–33. doi:10.1016/j.eja.2011.11.002
    • (2012) Eur J Agron , vol.42 , pp. 22-33
    • He, J.1    Le Gouis, J.2    Stratonovitch, P.3
  • 21
    • 84906911933 scopus 로고    scopus 로고
    • Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions
    • PID: 24264761
    • Heslot N, Akdemir D, Sorrells ME, Jannink J-L (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480. doi:10.1007/s00122-013-2231-5
    • (2014) Theor Appl Genet , vol.127 , pp. 463-480
    • Heslot, N.1    Akdemir, D.2    Sorrells, M.E.3    Jannink, J.-L.4
  • 22
    • 57849099153 scopus 로고    scopus 로고
    • Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach
    • Iizumi T, Yokozawa M, Nishimori M (2009) Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach. Agric For Meteorol 149:333–348. doi:10.1016/j.agrformet.2008.08.015
    • (2009) Agric For Meteorol , vol.149 , pp. 333-348
    • Iizumi, T.1    Yokozawa, M.2    Nishimori, M.3
  • 23
    • 33746582549 scopus 로고    scopus 로고
    • The calibration of a model for daylength responses in spring wheat for large numbers of cultivars
    • Jamieson PD, Munro CA (2000) The calibration of a model for daylength responses in spring wheat for large numbers of cultivars. Agron N Z 30:25–28
    • (2000) Agron N Z , vol.30 , pp. 25-28
    • Jamieson, P.D.1    Munro, C.A.2
  • 24
    • 0034730832 scopus 로고    scopus 로고
    • Modelling nitrogen uptake and redistribution in wheat
    • Jamieson PD, Semenov MA (2000) Modelling nitrogen uptake and redistribution in wheat. Field Crops Res 68:21–29. doi:10.1016/S0378-4290(00)00103-9
    • (2000) Field Crops Res , vol.68 , pp. 21-29
    • Jamieson, P.D.1    Semenov, M.A.2
  • 25
    • 0031984828 scopus 로고    scopus 로고
    • A comparison of the models AFRCWHEAT2, CERES-Wheat, sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought
    • Jamieson PD, Porter JR, Goudriaan J et al (1998a) A comparison of the models AFRCWHEAT2, CERES-Wheat, sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Res 55:23–44. doi:10.1016/S0378-4290(97)00060-9
    • (1998) Field Crops Res , vol.55 , pp. 23-44
    • Jamieson, P.D.1    Porter, J.R.2    Goudriaan, J.3
  • 26
    • 0031597355 scopus 로고    scopus 로고
    • Sirius: a mechanistic model of wheat response to environmental variation
    • Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998b) Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8:161–179
    • (1998) Eur J Agron , vol.8 , pp. 161-179
    • Jamieson, P.D.1    Semenov, M.A.2    Brooking, I.R.3    Francis, G.S.4
  • 27
    • 84905591226 scopus 로고    scopus 로고
    • A reaction norm model for genomic selection using high-dimensional genomic and environmental data
    • PID: 24337101
    • Jarquín D, Crossa J, Lacaze X et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607. doi:10.1007/s00122-013-2243-1
    • (2014) Theor Appl Genet , vol.127 , pp. 595-607
    • Jarquín, D.1    Crossa, J.2    Lacaze, X.3
  • 28
    • 0037232266 scopus 로고    scopus 로고
    • An overview of APSIM, a model designed for farming systems simulation
    • Keating BA, Carberry PS, Hammer GL et al (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288
    • (2003) Eur J Agron , vol.18 , pp. 267-288
    • Keating, B.A.1    Carberry, P.S.2    Hammer, G.L.3
  • 30
    • 84861875482 scopus 로고    scopus 로고
    • Using farm accountancy data to calibrate a crop model for climate impact studies
    • Klein T, Calanca P, Holzkämper A et al (2012) Using farm accountancy data to calibrate a crop model for climate impact studies. Agric Syst 111:23–33. doi:10.1016/j.agsy.2012.05.001
    • (2012) Agric Syst , vol.111 , pp. 23-33
    • Klein, T.1    Calanca, P.2    Holzkämper, A.3
  • 31
    • 0025217786 scopus 로고
    • Efficiency of marker-assisted selection in the improvement of quantitative traits
    • COI: 1:STN:280:DyaK3c7osFWmsA%3D%3D, PID: 1968875
    • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756
    • (1990) Genetics , vol.124 , pp. 743-756
    • Lande, R.1    Thompson, R.2
  • 32
    • 84856862708 scopus 로고    scopus 로고
    • Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design: assessing the expected data impact
    • Leube PC, Geiges A, Nowak W (2012) Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design: assessing the expected data impact. Water Resour Res 48:W02501. doi:10.1029/2010WR010137
    • (2012) Water Resour Res , vol.48 , pp. W02501
    • Leube, P.C.1    Geiges, A.2    Nowak, W.3
  • 34
    • 0036256969 scopus 로고    scopus 로고
    • Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods
    • Makowski D, Wallach D, Tremblay M (2002) Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomie 22:191–203. doi:10.1051/agro:2002007
    • (2002) Agronomie , vol.22 , pp. 191-203
    • Makowski, D.1    Wallach, D.2    Tremblay, M.3
  • 35
    • 84984823925 scopus 로고    scopus 로고
    • Predicting responses in multiple environments: issues in relation to genotype × environment interactions
    • Malosetti M, Bustos-Korts D, Boer MP, van Eeuwijk FA (2016) Predicting responses in multiple environments: issues in relation to genotype × environment interactions. Crop Sci. doi:10.2135/cropsci2015.05.0311
    • (2016) Crop Sci
    • Malosetti, M.1    Bustos-Korts, D.2    Boer, M.P.3    van Eeuwijk, F.A.4
  • 36
    • 84940676651 scopus 로고    scopus 로고
    • In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management
    • COI: 1:CAS:528:DC%2BC2MXitVCqu73O, PID: 25810069
    • Martre P, He J, Le Gouis J, Semenov MA (2015a) In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J Exp Bot 66:3581–3598. doi:10.1093/jxb/erv049
    • (2015) J Exp Bot , vol.66 , pp. 3581-3598
    • Martre, P.1    He, J.2    Le Gouis, J.3    Semenov, M.A.4
  • 37
    • 84923027677 scopus 로고    scopus 로고
    • Multimodel ensembles of wheat growth: many models are better than one
    • Martre P, Wallach D, Asseng S et al (2015b) Multimodel ensembles of wheat growth: many models are better than one. Glob Change Biol 21:911–925. doi:10.1111/gcb.12768
    • (2015) Glob Change Biol , vol.21 , pp. 911-925
    • Martre, P.1    Wallach, D.2    Asseng, S.3
  • 38
    • 32344441351 scopus 로고    scopus 로고
    • A gene-based model to simulate soybean development and yield responses to environment
    • COI: 1:CAS:528:DC%2BD28XhsFKjtr4%3D
    • Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci 46:456. doi:10.2135/cropsci2005.04-0372
    • (2006) Crop Sci , vol.46 , pp. 456
    • Messina, C.D.1    Jones, J.W.2    Boote, K.J.3    Vallejos, C.E.4
  • 40
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • COI: 1:CAS:528:DC%2BD3MXjsFemtbY%3D, PID: 11290733
    • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 41
    • 15244344814 scopus 로고    scopus 로고
    • Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model
    • COI: 1:CAS:528:DC%2BD2MXhsFShur0%3D, PID: 15723276
    • Nakagawa H, Yamagishi J, Miyamoto N et al (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786. doi:10.1007/s00122-004-1905-4
    • (2005) Theor Appl Genet , vol.110 , pp. 778-786
    • Nakagawa, H.1    Yamagishi, J.2    Miyamoto, N.3
  • 42
    • 84979090952 scopus 로고    scopus 로고
    • Towards integration of genomic selection with crop modeling: the development of an integrated approach to predicting rice heading dates
    • PID: 26791836
    • Onogi A, Watanabe M, Mochizuki T, Hayashi T, Nakagawa H, Hasegawa T, Iwata H (2016) Towards integration of genomic selection with crop modeling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129:805–817
    • (2016) Theor Appl Genet , vol.129 , pp. 805-817
    • Onogi, A.1    Watanabe, M.2    Mochizuki, T.3    Hayashi, T.4    Nakagawa, H.5    Hasegawa, T.6    Iwata, H.7
  • 43
    • 33750727035 scopus 로고    scopus 로고
    • A comparison of experimental designs for selection in breeding trials with nested treatment structure
    • COI: 1:STN:280:DC%2BD28nlt1KisQ%3D%3D, PID: 17028902
    • Piepho HP, Williams ER (2006) A comparison of experimental designs for selection in breeding trials with nested treatment structure. Theor Appl Genet 113:1505–1513
    • (2006) Theor Appl Genet , vol.113 , pp. 1505-1513
    • Piepho, H.P.1    Williams, E.R.2
  • 44
    • 79251488142 scopus 로고    scopus 로고
    • Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration
    • COI: 1:CAS:528:DC%2BC3MXhtVektbc%3D, PID: 21036926
    • Prudent M, Lecomte A, Bouchet J-P et al (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 62:907–919. doi:10.1093/jxb/erq318
    • (2011) J Exp Bot , vol.62 , pp. 907-919
    • Prudent, M.1    Lecomte, A.2    Bouchet, J.-P.3
  • 45
    • 28544443302 scopus 로고    scopus 로고
    • Simulating genotypic variation of fruit quality in an advanced peachxPrunus davidiana cross
    • COI: 1:CAS:528:DC%2BD2MXht1GlsbbM, PID: 16234284
    • Quilot B, Genard M, Lescourret F et al (2005) Simulating genotypic variation of fruit quality in an advanced peachxPrunus davidiana cross. J Exp Bot 56:3071–3081. doi:10.1093/jxb/eri304
    • (2005) J Exp Bot , vol.56 , pp. 3071-3081
    • Quilot, B.1    Genard, M.2    Lescourret, F.3
  • 46
    • 0037322869 scopus 로고    scopus 로고
    • Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit
    • COI: 1:CAS:528:DC%2BD3sXhtlyjs7w%3D, PID: 12586890
    • Reymond M, Muller B, Leonardi A et al (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675. doi:10.1104/pp.013839
    • (2003) Plant Physiol , vol.131 , pp. 664-675
    • Reymond, M.1    Muller, B.2    Leonardi, A.3
  • 47
    • 84901364838 scopus 로고    scopus 로고
    • Recovering power in association mapping panels with variable levels of linkage disequilibrium
    • PID: 24532779
    • Rincent R, Moreau L, Monod H et al (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387. doi:10.1534/genetics.113.159731
    • (2014) Genetics , vol.197 , pp. 375-387
    • Rincent, R.1    Moreau, L.2    Monod, H.3
  • 49
    • 84901270045 scopus 로고    scopus 로고
    • Genomic selection allowing for marker-by-environment interaction
    • Schulz-Streeck T, Ogutu JO, Gordillo A et al (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538. doi:10.1111/pbr.12105
    • (2013) Plant Breed , vol.132 , pp. 532-538
    • Schulz-Streeck, T.1    Ogutu, J.O.2    Gordillo, A.3
  • 50
    • 0030365970 scopus 로고    scopus 로고
    • Comparison of wheat simulation models under climate change. II. Application of climate change scenarios
    • Semenov M, Wolf J, Evans L et al (1996) Comparison of wheat simulation models under climate change. II. Application of climate change scenarios. Clim Res 7:271–281. doi:10.3354/cr007271
    • (1996) Clim Res , vol.7 , pp. 271-281
    • Semenov, M.1    Wolf, J.2    Evans, L.3
  • 51
    • 0032516937 scopus 로고    scopus 로고
    • Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates
    • Semenov M, Brooks R, Barrow E, Richardson C (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10:95–107. doi:10.3354/cr010095
    • (1998) Clim Res , vol.10 , pp. 95-107
    • Semenov, M.1    Brooks, R.2    Barrow, E.3    Richardson, C.4
  • 52
    • 84938717555 scopus 로고    scopus 로고
    • Integrating crop growth models with whole genome prediction through approximate Bayesian computation
    • PID: 26121133
    • Technow F, Messina CD, Radu Totir LR et al (2015) Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PLoS One 10:e0130855. doi:10.1371/journal.pone.0130855
    • (2015) PLoS One , vol.10
    • Technow, F.1    Messina, C.D.2    Radu Totir, L.R.3
  • 53
    • 84871361925 scopus 로고    scopus 로고
    • Statistical distributions of test statistics used for quantitative trait association mapping in structured populations
    • PID: 23146127
    • Teyssèdre S, Elsen J-M, Ricard A (2012) Statistical distributions of test statistics used for quantitative trait association mapping in structured populations. Genet Sel Evol 44:32. doi:10.1186/1297-9686-44-32
    • (2012) Genet Sel Evol , vol.44 , pp. 32
    • Teyssèdre, S.1    Elsen, J.-M.2    Ricard, A.3
  • 54
    • 82955203483 scopus 로고    scopus 로고
    • Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model: flowering time in Brassica oleracea
    • PID: 21973058
    • Uptmoor R, Li J, Schrag T, Stützel H (2011) Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model: flowering time in Brassica oleracea. Plant Biol. doi:10.1111/j.1438-8677.2011.00478.x
    • (2011) Plant Biol
    • Uptmoor, R.1    Li, J.2    Schrag, T.3    Stützel, H.4
  • 55
    • 22344433424 scopus 로고    scopus 로고
    • Bayesian calibration of process-based forest models: bridging the gap between models and data
    • PID: 15870058
    • Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25:915–927
    • (2005) Tree Physiol , vol.25 , pp. 915-927
    • Van Oijen, M.1    Rougier, J.2    Smith, R.3
  • 56
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • COI: 1:CAS:528:DC%2BD1cXhtlajtLzO, PID: 18946147
    • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423. doi:10.3168/jds.2007-0980
    • (2008) J Dairy Sci , vol.91 , pp. 4414-4423
    • VanRaden, P.M.1
  • 57
    • 78650569544 scopus 로고    scopus 로고
    • A package of parameter estimation methods and implementation for the STICS crop-soil model
    • Wallach D, Buis S, Lecharpentier P et al (2011) A package of parameter estimation methods and implementation for the STICS crop-soil model. Environ Model Softw 26:386–394. doi:10.1016/j.envsoft.2010.09.004
    • (2011) Environ Model Softw , vol.26 , pp. 386-394
    • Wallach, D.1    Buis, S.2    Lecharpentier, P.3
  • 58
    • 52549104220 scopus 로고    scopus 로고
    • An analytic study of the power of popular quantitative-trait-locus mapping methods
    • PID: 18766435
    • Wang K (2008) An analytic study of the power of popular quantitative-trait-locus mapping methods. Behav Genet 38:554–559. doi:10.1007/s10519-008-9220-5
    • (2008) Behav Genet , vol.38 , pp. 554-559
    • Wang, K.1
  • 59
    • 0029790015 scopus 로고    scopus 로고
    • Simulating effects of genes for physiological traits in a process-oriented crop model
    • White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agron J 88:416–422
    • (1996) Agron J , vol.88 , pp. 416-422
    • White, J.W.1    Hoogenboom, G.2
  • 60
    • 42449089268 scopus 로고    scopus 로고
    • Simulation-based analysis of effects of and loci on flowering in wheat
    • White JW, Herndl M, Hunt LA et al (2008) Simulation-based analysis of effects of and loci on flowering in wheat. Crop Sci 48:678. doi:10.2135/cropsci2007.06.0318
    • (2008) Crop Sci , vol.48 , pp. 678
    • White, J.W.1    Herndl, M.2    Hunt, L.A.3
  • 61
    • 0034113697 scopus 로고    scopus 로고
    • Marker-assisted selection using ridge regression
    • COI: 1:STN:280:DC%2BD3c3ns12rsg%3D%3D, PID: 10816982
    • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252. doi:10.1017/S0016672399004462
    • (2000) Genet Res , vol.75 , pp. 249-252
    • Whittaker, J.C.1    Thompson, R.2    Denham, M.C.3
  • 62
    • 84886746757 scopus 로고    scopus 로고
    • Towards optimizing experiments for maximum-confidence model selection between different soil-plant models
    • Wöhling T, Geiges A, Nowak W et al (2013) Towards optimizing experiments for maximum-confidence model selection between different soil-plant models. Procedia Environ Sci 19:514–523. doi:10.1016/j.proenv.2013.06.058
    • (2013) Procedia Environ Sci , vol.19 , pp. 514-523
    • Wöhling, T.1    Geiges, A.2    Nowak, W.3
  • 63
    • 15944420929 scopus 로고    scopus 로고
    • QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley
    • COI: 1:CAS:528:DC%2BD2MXit1Knurg%3D, PID: 15710636
    • Yin X (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976. doi:10.1093/jxb/eri090
    • (2005) J Exp Bot , vol.56 , pp. 967-976
    • Yin, X.1
  • 65
    • 31744440502 scopus 로고    scopus 로고
    • A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
    • COI: 1:CAS:528:DC%2BD28XotlGmuw%3D%3D, PID: 16380716
    • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208
    • (2006) Nat Genet , vol.38 , pp. 203-208
    • Yu, J.1    Pressoir, G.2    Briggs, W.H.3    Vroh Bi, I.4    Yamasaki, M.5
  • 66
    • 84883210353 scopus 로고    scopus 로고
    • Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments
    • COI: 1:CAS:528:DC%2BC3sXht1yrsrzJ, PID: 23873997
    • Zheng B, Biddulph B, Li D et al (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J Exp Bot 64:3747–3761. doi:10.1093/jxb/ert209
    • (2013) J Exp Bot , vol.64 , pp. 3747-3761
    • Zheng, B.1    Biddulph, B.2    Li, D.3
  • 67
    • 67849114172 scopus 로고    scopus 로고
    • Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study
    • COI: 1:CAS:528:DC%2BD1MXlvFCmtL4%3D, PID: 19299342
    • Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182:355–364. doi:10.1534/genetics.108.098277
    • (2009) Genetics , vol.182 , pp. 355-364
    • Zhong, S.1    Dekkers, J.C.M.2    Fernando, R.L.3    Jannink, J.-L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.