메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Exploiting side information in locality preserving projection

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CANNING; COMPUTER VISION; CRACK PROPAGATION; DATA STRUCTURES; FEATURE EXTRACTION; IMAGE PROCESSING; KETONES; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 51949114601     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587596     Document Type: Conference Paper
Times cited : (27)

References (28)
  • 2
    • 33750378734 scopus 로고    scopus 로고
    • D. Cai, X. He, H. J., and Z. H.-J. Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Processing, 15(11):3608-3614, 2006. 1, 5, 6, 7
    • D. Cai, X. He, H. J., and Z. H.-J. Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Processing, 15(11):3608-3614, 2006. 1, 5, 6, 7
  • 6
    • 0034300875 scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • 2000
    • L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 33(10):1713-1726, 2000. 1
    • (1713) Pattern Recognition , vol.33 , Issue.10 , pp. 1
    • Chen, L.-F.1    Liao, H.-Y.M.2    Ko, M.-T.3    Lin, J.-C.4    Yu, G.-J.5
  • 8
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007. 7
    • (2007) Science , vol.315 , Issue.972-976 , pp. 7
    • Frey, B.1    Dueck, D.2
  • 9
    • 0035363672 scopus 로고    scopus 로고
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition undervariable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643-660, 2001. 5, 7
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition undervariable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643-660, 2001. 5, 7
  • 11
    • 15044358511 scopus 로고    scopus 로고
    • X. He, S. Yan, H. Y., N. P., and Z. H.-J. Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(3):328-340, 2005. 1
    • X. He, S. Yan, H. Y., N. P., and Z. H.-J. Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(3):328-340, 2005. 1
  • 14
    • 18144420071 scopus 로고    scopus 로고
    • K. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684-698, 2005. 5, 7
    • K. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684-698, 2005. 5, 7
  • 15
    • 38649136929 scopus 로고
    • Kernel class-wise locality preserving projection
    • 1787
    • J.-B. Li, J.-S. Pan, and S.-C. Chu. Kernel class-wise locality preserving projection. Inf. Sci., 178(7):1825-1835, 2008. 1
    • (1825) Inf. Sci , vol.2008 , pp. 1
    • Li, J.-B.1    Pan, J.-S.2    Chu, S.-C.3
  • 16
    • 35148831529 scopus 로고    scopus 로고
    • Recognize high resolution faces: From macrocosm to microcosm
    • D. Lin and X. Tang. Recognize high resolution faces: From macrocosm to microcosm. In Proc. of CVPR'06, 2006. 1
    • (2006) Proc. of CVPR'06 , pp. 1
    • Lin, D.1    Tang, X.2
  • 17
    • 0000815402 scopus 로고    scopus 로고
    • Enhanced fisher linear discriminant moldels for face recognition
    • C. Liu and H. Wechsler. Enhanced fisher linear discriminant moldels for face recognition. In Proc. of ICPR'98, 1998. 1
    • (1998) Proc. of ICPR'98 , pp. 1
    • Liu, C.1    Wechsler, H.2
  • 19
    • 35148853478 scopus 로고    scopus 로고
    • Survey: Cross-validation in Theory and in Practice
    • Dept. of Computational Science Reserach, David Sarnoff Reserach Center, Princeton, New Jersey, 3, 4, 5
    • M. Plutowski. Survey: Cross-validation in Theory and in Practice. Research Report. Dept. of Computational Science Reserach, David Sarnoff Reserach Center, Princeton, New Jersey., 1996. 3, 4, 5
    • (1996) Research Report
    • Plutowski, M.1
  • 20
    • 4544292940 scopus 로고    scopus 로고
    • T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression (PIE) database. In Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, page 215, Washington, DC, USA, May 2002. IEEE Computer Society. 5
    • T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression (PIE) database. In Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, page 215, Washington, DC, USA, May 2002. IEEE Computer Society. 5
  • 22
    • 5044232408 scopus 로고    scopus 로고
    • Dual-space linear discriminant analysis for face recognition
    • X. Wang and X. Tang. Dual-space linear discriminant analysis for face recognition. In Proc. of CVPR'04, 2004. 1
    • (2004) Proc. of CVPR'04 , pp. 1
    • Wang, X.1    Tang, X.2
  • 23
    • 5044232408 scopus 로고    scopus 로고
    • Random sampling LDA for face recognition
    • X. Wang and X. Tang. Random sampling LDA for face recognition. In Proc. of CVPR'04, 2004. 1
    • (2004) Proc. of CVPR'04 , pp. 1
    • Wang, X.1    Tang, X.2
  • 27
    • 33144466184 scopus 로고    scopus 로고
    • A discriminative learning framework with pairwise constraints for video object classification
    • R. Yan, J. Zhang, J. Yang, and A. G. Hauptmann. A discriminative learning framework with pairwise constraints for video object classification. IEEE Trans. Pattern Anal. Mach. Intelligence, 28(4):578-593, 2006. 2
    • (2006) IEEE Trans. Pattern Anal. Mach. Intelligence , vol.28 , Issue.4
    • Yan, R.1    Zhang, J.2    Yang, J.3    Hauptmann, A.G.4
  • 28
    • 0003101940 scopus 로고    scopus 로고
    • Discriminant analysis of principal components for face recognition
    • W. Zhao, R. Chellappa, and A. Krishnaswamy. Discriminant analysis of principal components for face recognition. In Proc. of FGR'98, 1998. 1
    • (1998) Proc. of FGR'98 , pp. 1
    • Zhao, W.1    Chellappa, R.2    Krishnaswamy, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.