메뉴 건너뛰기




Volumn 76, Issue 1, 2012, Pages 114-124

Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints

Author keywords

Clustering; Dimensionality reduction; Generalized eigenproblem; Kernel methods; Linear transformation; Semi supervised learning

Indexed keywords

CLUSTERING; DIMENSIONALITY REDUCTION; GENERALIZED EIGENPROBLEMS; KERNEL METHODS; SEMI-SUPERVISED LEARNING;

EID: 80555131196     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.057     Document Type: Article
Times cited : (16)

References (30)
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 2003, 15(6):1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 77952518276 scopus 로고    scopus 로고
    • A unified semi-supervised dimensionality reduction framework for manifold learning
    • Chatpatanasiri R., Kijsirikul B. A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing 2010, 73(10-12):1631-1640.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1631-1640
    • Chatpatanasiri, R.1    Kijsirikul, B.2
  • 15
    • 47649089615 scopus 로고    scopus 로고
    • Semantic coding by supervised dimensionality reduction
    • Kokiopoulou E., Frossard P. Semantic coding by supervised dimensionality reduction. IEEE Transactions on Multimedia 2008, 10(5):806-818.
    • (2008) IEEE Transactions on Multimedia , vol.10 , Issue.5 , pp. 806-818
    • Kokiopoulou, E.1    Frossard, P.2
  • 18
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 1901, 2(6):559-572.
    • (1901) Philosophical Magazine , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • 12 2000
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(5500):2323-2326. 12 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 23
    • 77952549496 scopus 로고    scopus 로고
    • A two-step framework for highly nonlinear data unfolding
    • Sun M., Liu C., Yang J., Jin Z., Yang J. A two-step framework for highly nonlinear data unfolding. Neurocomputing 2010, 73(10-12):1801-1807.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1801-1807
    • Sun, M.1    Liu, C.2    Yang, J.3    Jin, Z.4    Yang, J.5
  • 24
    • 52149103339 scopus 로고    scopus 로고
    • Data visualization and dimensionality reduction using kernel maps with a reference point
    • Suykens J.A.K. Data visualization and dimensionality reduction using kernel maps with a reference point. IEEE Transactions on Neural Networks 2008, 19(9):1501-1517.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.9 , pp. 1501-1517
    • Suykens, J.A.K.1
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(5500):2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 29
    • 0001765951 scopus 로고    scopus 로고
    • A direct lda algorithm for high-dimensional data with application to face recognition
    • Yu H., Yang J. A direct lda algorithm for high-dimensional data with application to face recognition. Pattern Recognition 2001, 34:2067-2070.
    • (2001) Pattern Recognition , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.