메뉴 건너뛰기




Volumn , Issue , 2014, Pages 36-45

Learning image embeddings using convolutional neural networks for improved multi-modal semantics

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; LARGE DATASET; MULTILAYER NEURAL NETWORKS; NATURAL LANGUAGE PROCESSING SYSTEMS; OBJECT RECOGNITION; SEMANTIC WEB; SEMANTICS;

EID: 84952650015     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/d14-1005     Document Type: Conference Paper
Times cited : (235)

References (40)
  • 5
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • Anna Bosch, Andrew Zisserman, and Xavier Munoz. 2007. Image classification using random forests and ferns. In Proceedings of ICCV.
    • (2007) Proceedings of ICCV
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 12
    • 84905219726 scopus 로고    scopus 로고
    • Wiley Online Library
    • Christiane Fellbaum. 1999. WordNet. Wiley Online Library.
    • (1999) WordNet
    • Fellbaum, C.1
  • 14
    • 84928030724 scopus 로고    scopus 로고
    • Constructing hierarchical image-tags bimodal representations for word tags alternative choice
    • Fangxiang Feng, Ruifan Li, and Xiaojie Wang. 2013. Constructing hierarchical image-tags bimodal representations for word tags alternative choice. CoRR.
    • (2013) CoRR
    • Feng, F.1    Li, R.2    Wang, X.3
  • 19
    • 84906926558 scopus 로고    scopus 로고
    • Improving multi-modal representations using image dispersion: Why less is sometimes more
    • Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen Clark. 2014. Improving Multi-Modal Representations Using Image Dispersion: Why Less is Sometimes More. In Proceedings of ACL 2014.
    • (2014) Proceedings of ACL 2014
    • Kiela, D.1    Hill, F.2    Korhonen, A.3    Clark, S.4
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1106- 1114.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 84906927509 scopus 로고    scopus 로고
    • Is this a wampimuk? Cross-modal mapping between distributional semantics and the visual world
    • Angeliki Lazaridou, Elia Bruni, and Marco Baroni. 2014. Is this a wampimuk? cross-modal mapping between distributional semantics and the visual world. In Proceedings of ACL 2014.
    • (2014) Proceedings of ACL 2014
    • Lazaridou, A.1    Bruni, E.2    Baroni, M.3
  • 22
    • 0041856570 scopus 로고
    • Claws4: The tagging of the British national corpus
    • Association for Computational Linguistics
    • Geoffrey Leech, Roger Garside, and Michael Bryant. 1994. Claws4: The tagging of the British National Corpus. In Proceedings of the 15th conference on Computational linguistics-Volume 1, pages 622- 628. Association for Computational Linguistics.
    • (1994) Proceedings of the 15th Conference on Computational Linguistics , vol.1 , pp. 622-628
    • Leech, G.1    Garside, R.2    Bryant, M.3
  • 25
    • 79961230563 scopus 로고    scopus 로고
    • Symbol interdependency in symbolic and embodied cognition
    • M. M. Louwerse. 2011. Symbol interdependency in symbolic and embodied cognition. TopiCS in Cognitive Science, 3:273-302.
    • (2011) TopiCS in Cognitive Science , vol.3 , pp. 273-302
    • Louwerse, M.M.1
  • 30
    • 84906929694 scopus 로고    scopus 로고
    • A multimodal lda model integrating textual, cognitive and visual modalities
    • Seattle, Washington, USA, October. Association for Computational Linguistics
    • Stephen Roller and Sabine Schulte im Walde. 2013. A multimodal LDA model integrating textual, cognitive and visual modalities. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1146-1157, Seattle, Washington, USA, October. Association for Computational Linguistics.
    • (2013) Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing , pp. 1146-1157
    • Roller, S.1    Walde, S.S.I.2
  • 33
    • 84906930522 scopus 로고    scopus 로고
    • Learning grounded meaning representations with autoencoders
    • Baltimore, MD
    • Carina Silberer and Mirella Lapata. 2014. Learning Grounded Meaning Representations with Autoencoders. In Proceedings of ACL 2014, Baltimore, MD.
    • (2014) Proceedings of ACL 2014
    • Silberer, C.1    Lapata, M.2
  • 36
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • F. Pereira, C.J.C. Burges, L. Bottou, and K.Q.Weinberger, editors
    • Nitish Srivastava and Ruslan Salakhutdinov. 2012. Multimodal learning with deep boltzmann machines. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q.Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2222-2230.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2222-2230
    • Srivastava, N.1    Salakhutdinov, R.2
  • 40
    • 84906341064 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Matthew D. Zeiler and Rob Fergus. 2013. Visualizing and understanding convolutional networks. CoRR.
    • (2013) CoRR
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.