메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 721-732

Learning grounded meaning representations with autoencoders

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS;

EID: 84906930522     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p14-1068     Document Type: Conference Paper
Times cited : (233)

References (56)
  • 1
    • 85036478586 scopus 로고    scopus 로고
    • SemEval- 2007 task 02: Evaluating word sense induction and discrimination systems
    • Prague, Czech Republic
    • Agirre, Eneko and Aitor Soroa. 2007. SemEval- 2007 Task 02: Evaluating Word Sense Induction and Discrimination Systems. In Proceedings of the Fourth International Workshop on Semantic Evaluations. Prague, Czech Republic, pages 7-12.
    • (2007) Proceedings of the Fourth International Workshop on Semantic Evaluations , pp. 7-12
    • Eneko, A.1    Soroa, A.2
  • 2
    • 67651176167 scopus 로고    scopus 로고
    • Integrating experiential and distributional data to learn semantic representations
    • Andrews, M., G. Vigliocco, and D. Vinson. 2009. Integrating Experiential and Distributional Data to Learn Semantic Representations. Psychological Review 116(3):463-498.
    • (2009) Psychological Review , vol.116 , Issue.3 , pp. 463-498
    • Andrews, M.1    Vigliocco, G.2    Vinson, D.3
  • 3
    • 77953151727 scopus 로고    scopus 로고
    • Strudel: A corpus-based semantic model based on properties and types
    • Baroni, M., B. Murphy, E. Barbu, and M. Poesio. 2010. Strudel: A Corpus-Based Semantic Model Based on Properties and Types. Cognitive Science 34(2):222-254.
    • (2010) Cognitive Science , vol.34 , Issue.2 , pp. 222-254
    • Baroni, M.1    Murphy, B.2    Barbu, E.3    Poesio, M.4
  • 5
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, MIT Press
    • Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle. 2007. Greedy Layer-Wise Training of Deep Networks. In Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, Advances in Neural Information Processing Systems 19. MIT Press, pages 153-160.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 7
    • 85081787936 scopus 로고    scopus 로고
    • Chinese whispers - An efficient graph clustering algorithm and its application to natural language processing problems
    • New York, NY
    • Biemann, Chris. 2006. Chinese Whispers - an Efficient Graph Clustering Algorithm and its Application to Natural Language Processing Problems. In Proceedings of TextGraphs: the 1st Workshop on Graph Based Methods for Natural Language Processing. New York, NY, pages 73-80.
    • (2006) Proceedings of TextGraphs: The 1st Workshop on Graph Based Methods for Natural Language Processing , pp. 73-80
    • Chris, B.1
  • 12
    • 84871385304 scopus 로고    scopus 로고
    • Distributional semantics with eyes: Using image analysis to improve computational representations of word meaning
    • Nara, Japan
    • Bruni, E., J. Uijlings, M. Baroni, and N. Sebe. 2012b. Distributional Semantics with Eyes: Using Image Analysis to Improve Computational Representations of Word Meaning. In Proceedings of the 20th ACM International Conference on Multimedia. Nara, Japan, pages 1219-1228.
    • (2012) Proceedings of the 20th ACM International Conference on Multimedia , pp. 1219-1228
    • Bruni, E.1    Uijlings, J.2    Baroni, M.3    Sebe, N.4
  • 20
    • 33747738463 scopus 로고
    • Singular value decomposition and least squares solutions
    • Golub, Gene and Christian Reinsch. 1970. Singular Value Decomposition and Least Squares Solutions. Numerische Mathematik 14(5):403-420.
    • (1970) Numerische Mathematik , vol.14 , Issue.5 , pp. 403-420
    • Gene, G.1    Reinsch, C.2
  • 22
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon, D. R., S. R. Szedmak, and J. R. Shawe- Taylor. 2004. Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Computation 16(12):2639-2664.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.R.2    Shawe-Taylor, J.R.3
  • 24
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, Geoffrey E. and Ruslan R. Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 25
    • 84883394520 scopus 로고    scopus 로고
    • Framing image description as a ranking task: Data, models and evaluation metrics
    • Hodosh, Micah, Peter Young, and Julia Hockenmaier. 2013. Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics. Journal of Artificial Intelligence Research 47:853-899.
    • (2013) Journal of Artificial Intelligence Research , vol.47 , pp. 853-899
    • Micah, H.1    Young, P.2    Hockenmaier, J.3
  • 28
    • 0031869677 scopus 로고    scopus 로고
    • Object perception and object naming in early development
    • Landau, B., L. Smith, and S. Jones. 1998. Object Perception and Object Naming in Early Development. Trends in Cognitive Science 27:19-24.
    • (1998) Trends in Cognitive Science , vol.27 , pp. 19-24
    • Landau, B.1    Smith, L.2    Jones, S.3
  • 29
    • 0000600219 scopus 로고    scopus 로고
    • A solution to plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
    • Landauer, Thomas and Susan T. Dumais. 1997. A Solution to Plato's Problem: the Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological Review 104(2):211-240.
    • (1997) Psychological Review , vol.104 , Issue.2 , pp. 211-240
    • Landauer, T.1    Dumais, S.T.2
  • 30
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D. 2004. Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision 60(2):91-110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 32
    • 33646393800 scopus 로고    scopus 로고
    • Semantic feature production norms for a large set of living and nonliving things
    • McRae, K., G. S. Cree, M. S. Seidenberg, and C. McNorgan. 2005. Semantic Feature Production Norms for a Large Set of Living and Nonliving Things. Behavior Research Methods 37(4):547-559.
    • (2005) Behavior Research Methods , vol.37 , Issue.4 , pp. 547-559
    • McRae, K.1    Cree, G.S.2    Seidenberg, M.S.3    McNorgan, C.4
  • 39
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • Helsinki, Finland
    • Ranzato, Marc'Aurelio and Martin Szummer. 2008. Semi-supervised Learning of Compact Document Representations with Deep Networks. In Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland, pages 792-799.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 792-799
    • Ranzato, M.1    Szummer, M.2
  • 42
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, Fabrizio. 2002. Machine Learning in Automated Text Categorization. ACM Computing Surveys 34:1-47.
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 49
    • 77649189749 scopus 로고    scopus 로고
    • Combining feature norms and text data with topic models
    • Steyvers, Mark. 2010. Combining Feature Norms and Text Data with Topic Models. Acta Psychologica 133(3):234-342.
    • (2010) Acta Psychologica , vol.133 , Issue.3 , pp. 234-342
    • Steyvers, M.1
  • 51
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning: Vector space models of semantics
    • Turney, Peter D. and Patrick Pantel. 2010. From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research 37(1):141-188.
    • (2010) Journal of Artificial Intelligence Research , vol.37 , Issue.1 , pp. 141-188
    • Turney, P.D.1    Pantel, P.2
  • 52
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. 2010. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research 11:3371-3408.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 56
    • 34249701400 scopus 로고    scopus 로고
    • A unified model of early word learning integrating statistical and social cues
    • Yu, C. and D. H. Ballard. 2007. A Unified Model of Early Word Learning Integrating Statistical and Social Cues. Neurocomputing 70:2149-2165.
    • (2007) Neurocomputing , vol.70 , pp. 2149-2165
    • Yu, C.1    Ballard, D.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.