메뉴 건너뛰기




Volumn 13, Issue , 2017, Pages 23-47

Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning

Author keywords

Machine learning; Mental health; MHealth; Pervasive health; Sensors; Wearables

Indexed keywords

BIOLOGICAL MARKER;

EID: 85019136128     PISSN: 15485943     EISSN: 15485951     Source Type: Book Series    
DOI: 10.1146/annurev-clinpsy-032816-044949     Document Type: Article
Times cited : (501)

References (101)
  • 3
    • 84928883239 scopus 로고    scopus 로고
    • Towards personal stress informatics: Comparing minimally invasive techniques for measuring daily stress in the wild
    • Oldenburg, Ger. Brussels: Inst. Comput. Sci. Social-Inform. Telecom. Eng
    • Adams P, Rabbi M, Rahman T, Matthews M, Voida A, et al. 2014. Towards personal stress informatics: comparing minimally invasive techniques for measuring daily stress in the wild. Pervasive Health '14: Proc. 8th Int. Conf. Pervasive Comput. Technol. Healthc., Oldenburg, Ger. Brussels: Inst. Comput. Sci. Social-Inform. Telecom. Eng. http://eudl.eu/doi/10.4108/icst.pervasivehealth.2014.254959
    • (2014) Pervasive Health '14: Proc. 8th Int. Conf. Pervasive Comput. Technol. Healthc
    • Adams, P.1    Rabbi, M.2    Rahman, T.3    Matthews, M.4    Voida, A.5
  • 5
    • 84949962950 scopus 로고    scopus 로고
    • Beyond self-report: Tools to compare estimated and real-world smartphone use
    • Andrews S, Ellis DA, Shaw H, Piwek L. 2015. Beyond self-report: tools to compare estimated and real-world smartphone use. PLOS ONE 10:e0139004
    • (2015) PLOS ONE , vol.10 , pp. e0139004
    • Andrews, S.1    Ellis, D.A.2    Shaw, H.3    Piwek, L.4
  • 6
  • 7
    • 84989839417 scopus 로고    scopus 로고
    • Mobile behavioral sensing for outpatients and inpatients with schizophrenia
    • Ben-Zeev D, Wang R, Abdullah S, Brian R, Scherer EA, et al. 2016. Mobile behavioral sensing for outpatients and inpatients with schizophrenia. Psychiatr. Serv. 67:558-61
    • (2016) Psychiatr. Serv , vol.67 , pp. 558-561
    • Ben-Zeev, D.1    Wang, R.2    Abdullah, S.3    Brian, R.4    Scherer, E.A.5
  • 9
    • 79960442859 scopus 로고    scopus 로고
    • Objective measurement of sociability and activity: Mobile sensing in the community
    • Berke EM, Choudhury T, Ali S, Rabbi M. 2011. Objective measurement of sociability and activity: mobile sensing in the community. Ann. Fam. Med. 9:344-50
    • (2011) Ann. Fam. Med , vol.9 , pp. 344-350
    • Berke, E.M.1    Choudhury, T.2    Ali, S.3    Rabbi, M.4
  • 11
    • 56949103478 scopus 로고    scopus 로고
    • Generative or discriminative? Getting the best of both worlds
    • Bishop CM, Lasserre J. 2007. Generative or discriminative? Getting the best of both worlds. Bayesian Stat. 8:3-23
    • (2007) Bayesian Stat , vol.8 , pp. 3-23
    • Bishop, C.M.1    Lasserre, J.2
  • 12
    • 78650014112 scopus 로고    scopus 로고
    • Exploring end user preferences for location obfuscation, location-based services, and the value of location
    • Copenhagen, Denmark. New York: Assoc. Comput. Mach
    • Brush AJB, Krumm J, Scott C. 2010. Exploring end user preferences for location obfuscation, location-based services, and the value of location. Proc. UbiComp '10: 2010 ACM Conf. Ubiquitous Comput., Copenhagen, Denmark, pp. 95-104. New York: Assoc. Comput. Mach
    • (2010) Proc. UbiComp '10: 2010 ACM Conf. Ubiquitous Comput , pp. 95-104
    • Brush, A.J.B.1    Krumm, J.2    Scott, C.3
  • 14
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D. 2013. When Google got flu wrong. Nature 494:155-56
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 15
    • 79953822842 scopus 로고    scopus 로고
    • Affect detection: An interdisciplinary review of models, methods, and their applications
    • Calvo RA, D'Mello S. 2010. Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1:18-37
    • (2010) IEEE Trans. Affect. Comput , vol.1 , pp. 18-37
    • Calvo, R.A.1    D'Mello, S.2
  • 16
    • 84960941653 scopus 로고    scopus 로고
    • Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis
    • Osaka, Japan. New York: Assoc. Comput. Mach
    • Canzian L, Musolesi M. 2015. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. Proc. UbiComp '15: 2015 ACM Int. Joint Conf. Pervasive Ubiquitous Comput., Osaka, Japan, pp. 1293-304. New York: Assoc. Comput. Mach
    • (2015) Proc. UbiComp '15: 2015 ACM Int. Joint Conf. Pervasive Ubiquitous Comput , pp. 1293-1304
    • Canzian, L.1    Musolesi, M.2
  • 20
    • 84963750702 scopus 로고    scopus 로고
    • Assessing stress through human-smartphone interaction analysis
    • Istanbul. Brussels: Inst. Comput. Sci. Social-Inform. Telecom. Eng
    • Ciman M, Wac K, Gaggi O. 2015. Assessing stress through human-smartphone interaction analysis. Pervasive Health '15: Proc. 9th Int. Conf. Pervasive Comput. Technol. Healthc., Istanbul. Brussels: Inst. Comput. Sci. Social-Inform. Telecom. Eng. http://ieeexplore.ieee.org/document/7349382/
    • (2015) Pervasive Health '15: Proc. 9th Int. Conf. Pervasive Comput. Technol. Healthc
    • Ciman, M.1    Wac, K.2    Gaggi, O.3
  • 21
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • Collins FS, Varmus H. 2015. A new initiative on precision medicine. N. Engl. J. Med. 372:793-95
    • (2015) N. Engl. J. Med , vol.372 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 27
    • 33645311516 scopus 로고    scopus 로고
    • Realitymining: Sensing complex social systems
    • EagleN, Pentland A. 2006. Realitymining: sensing complex social systems. Pers.Ubiquitous Comput. 10:255-68
    • (2006) Pers.Ubiquitous Comput , vol.10 , pp. 255-268
    • Eagle, N.1    Pentland, A.2
  • 28
    • 70349313631 scopus 로고    scopus 로고
    • Inferring friendship network structure by using mobile phone data
    • Eagle N, Pentland A, Lazer D. 2009. Inferring friendship network structure by using mobile phone data. PNAS 106:15274-78
    • (2009) PNAS , vol.106 , pp. 15274-15278
    • Eagle, N.1    Pentland, A.2    Lazer, D.3
  • 29
    • 84960883825 scopus 로고    scopus 로고
    • A practical approach for recognizing eating moments with wrist-mounted inertial sensing
    • Osaka, Jpn. New York: Assoc. Comput. Mach
    • Edison T, Essa I, Abowd G. 2015. A practical approach for recognizing eating moments with wrist-mounted inertial sensing. Proc. UbiComp '15: 2015 ACM Int. Joint Conf. Pervasive Ubiquitous Comput., Osaka, Jpn., pp. 1029-40. New York: Assoc. Comput. Mach
    • (2015) Proc. UbiComp '15: 2015 ACM Int. Joint Conf. Pervasive Ubiquitous Comput , pp. 1029-1040
    • Edison, T.1    Essa, I.2    Abowd, G.3
  • 30
    • 79958104972 scopus 로고    scopus 로고
    • Identifying emotional states using keystroke dynamics
    • Vancouver, Can. New York: Assoc. Comput.Mach
    • Epp C, Lippold M, Mandryk RL. 2011. Identifying emotional states using keystroke dynamics. CHI'11: Proc. SIGCHI Conf. Hum. Factors Comput. Sys., Vancouver, Can., pp. 715-24. New York: Assoc. Comput.Mach
    • (2011) CHI'11: Proc. SIGCHI Conf. Hum. Factors Comput. Sys , pp. 715-724
    • Epp, C.1    Lippold, M.2    Mandryk, R.L.3
  • 31
    • 79960753480 scopus 로고    scopus 로고
    • Consolidating data harmonization-how to obtain quality and applicability?
    • author reply 65-66
    • Fortier I, Doiron D, Burton P, Raina P. 2011. Consolidating data harmonization-how to obtain quality and applicability? Am. J. Epidemiol. 174:261-64; author reply 65-66
    • (2011) Am. J. Epidemiol , vol.174 , pp. 261-264
    • Fortier, I.1    Doiron, D.2    Burton, P.3    Raina, P.4
  • 33
    • 84920997708 scopus 로고    scopus 로고
    • Smartphone-based recognition of states and state changes in bipolar disorder patients
    • Grünerbl A, Muaremi A, Osmani V, Bahle G, Ohler S, et al. 2015. Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J. Biomed. Health Inform. 19:140-48
    • (2015) IEEE J. Biomed. Health Inform , vol.19 , pp. 140-148
    • Grünerbl, A.1    Muaremi, A.2    Osmani, V.3    Bahle, G.4    Ohler, S.5
  • 34
    • 84899797533 scopus 로고    scopus 로고
    • Using smart phone mobility traces for the diagnosis of depressive and manic episodes in bipolar patients
    • Mar. 7-9, . New York: Assoc. Comput. Mach
    • Grünerbl A, Osmani V, Bahle G, Carrasco JC, Oehler S, et al. 2014. Using smart phone mobility traces for the diagnosis of depressive and manic episodes in bipolar patients. AH'14: Proc. 5th Augment. Hum. Int. Conf., Kobe, Jpn., Mar. 7-9, Artic. 38. New York: Assoc. Comput. Mach
    • (2014) AH'14: Proc. 5th Augment. Hum. Int. Conf., Kobe, Jpn
    • Grünerbl, A.1    Osmani, V.2    Bahle, G.3    Carrasco, J.C.4    Oehler, S.5
  • 37
    • 84905686599 scopus 로고    scopus 로고
    • ISleep: Unobtrusive sleep quality monitoring using smartphones
    • Rome, Artic. 4. New York: Assoc. Comput. Mach
    • Hao T, Xing G, Zhou G. 2013. iSleep: unobtrusive sleep quality monitoring using smartphones. SenSys'13: Proc. 11th ACM Conf. Embed. Netw. Sens. Syst., Rome, Artic. 4. New York: Assoc. Comput. Mach
    • (2013) SenSys'13: Proc. 11th ACM Conf. Embed. Netw. Sens. Syst
    • Hao, T.1    Xing, G.2    Zhou, G.3
  • 38
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G, Deng L, Yu D, Dahl GE, Mohamed AR, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Proc. Mag. 29:82-97
    • (2012) IEEE Signal Proc. Mag , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.R.5
  • 39
    • 84990936330 scopus 로고    scopus 로고
    • Inferring social relationships from mobile sensor data.WWW'14 Companion: Proc
    • New York: Assoc. Comput. Mach
    • Hsieh H-P, Li C-T. 2014. Inferring social relationships from mobile sensor data.WWW'14 Companion: Proc. 23rd Int. Conf. World Wide Web, Seoul, Korea, pp. 293-94. New York: Assoc. Comput. Mach
    • (2014) 23rd Int. Conf. World Wide Web, Seoul, Korea , pp. 293-294
    • Hsieh, H.-P.1    Li, C.-T.2
  • 40
    • 84897800925 scopus 로고    scopus 로고
    • Closing the evaluation gap in UbiHealth Research
    • Intille SS. 2013. Closing the evaluation gap in UbiHealth Research. IEEE Pervasive Comput. 12:76-79
    • (2013) IEEE Pervasive Comput , vol.12 , pp. 76-79
    • Intille, S.S.1
  • 43
  • 44
    • 84951185953 scopus 로고    scopus 로고
    • How good is 85%? A survey tool to connect classifier evaluation to acceptability of accuracy
    • Seoul, Korea. New York: Assoc. Comput. Mach
    • Kay M, Patel SN, Kientz JA. 2015. How good is 85%? A survey tool to connect classifier evaluation to acceptability of accuracy. CHI'15: Proc. 2016 CHI Conf. Human Factors Comput. Syst., Seoul, Korea, pp. 347-56. New York: Assoc. Comput. Mach
    • (2015) CHI'15: Proc. 2016 CHI Conf. Human Factors Comput. Syst , pp. 347-356
    • Kay, M.1    Patel, S.N.2    Kientz, J.A.3
  • 45
    • 79953795336 scopus 로고    scopus 로고
    • Using mobile &personal sensing technologies to support health behavior change in everyday life: Lessons learned
    • Klasnja P, Consolvo S, McDonald DW, Landay JA, Pratt W. 2009. Using mobile &personal sensing technologies to support health behavior change in everyday life: lessons learned. AMIA Annu. Symp. Proc. 2009:338-42
    • (2009) AMIA Annu. Symp. Proc , vol.2009 , pp. 338-342
    • Klasnja, P.1    Consolvo, S.2    McDonald, D.W.3    Landay, J.A.4    Pratt, W.5
  • 46
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classificationwith deep convolutional neural networks
    • Lake Tahoe,NV. RedHook,NY: Curran Assoc
    • Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classificationwith deep convolutional neural networks. Proc. 25th Int. Conf. Neural Inf. Process. Syst., Lake Tahoe,NV, pp. 1097-105. RedHook,NY: Curran Assoc
    • (2012) Proc. 25th Int. Conf. Neural Inf. Process. Syst , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 59
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
    • Miotto R, Li L, Kidd BA, Dudley JT. 2016. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6:26094
    • (2016) Sci. Rep. , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 61
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes
    • Vancouver, Can. Cambridge, MA: MIT Press
    • Ng AY, Jordan MI. 2002. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. NIPS'01: Proc. 14th Int. Conf. Neural Inf. Process. Syst. Nat. Synth., Vancouver, Can., pp. 841-48. Cambridge, MA: MIT Press
    • (2002) NIPS'01: Proc. 14th Int. Conf. Neural Inf. Process. Syst. Nat. Synth , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 65
    • 84976421435 scopus 로고    scopus 로고
    • Social media usage: 2005-2015
    • Washington, DC
    • Perrin A. 2015. Social media usage: 2005-2015. Rep., Pew Research Center, Washington, DC. http://www. pewinternet.org/2015/10/08/social-networking-usage-2005-2015
    • (2015) Rep., Pew Research Center
    • Perrin, A.1
  • 66
    • 84880535160 scopus 로고    scopus 로고
    • EBM: An entropy-based model to infer social strength from spatiotemporal data
    • New York. New York: Assoc. Comput. Mach
    • Pham H, Shahabi C, Liu Y. 2013. EBM: an entropy-based model to infer social strength from spatiotemporal data. SIGNMOD '13: Proc. 2013 ACM SIGMOD Int. Conf. Manag. Data, New York, pp. 265-76. New York: Assoc. Comput. Mach
    • (2013) SIGNMOD '13: Proc. 2013 ACM SIGMOD Int. Conf. Manag. Data , pp. 265-276
    • Pham, H.1    Shahabi, C.2    Liu, Y.3
  • 67
    • 84955483492 scopus 로고    scopus 로고
    • Multiple arousal theory and daily-life electrodermal activity asymmetry
    • Picard RW, Fedor S, Ayzenberg Y. 2016. Multiple arousal theory and daily-life electrodermal activity asymmetry. Emot. Rev. 8:62-75
    • (2016) Emot. Rev , vol.8 , pp. 62-75
    • Picard, R.W.1    Fedor, S.2    Ayzenberg, Y.3
  • 68
    • 84959469841 scopus 로고    scopus 로고
    • The rise of consumer health wearables: Promises and barriers
    • Piwek L, Ellis DA, Andrews S, Joinson A. 2016. The rise of consumer health wearables: promises and barriers. PLOS Med. 13:e1001953
    • (2016) PLOS Med , vol.13 , pp. e1001953
    • Piwek, L.1    Ellis, D.A.2    Andrews, S.3    Joinson, A.4
  • 69
    • 84982783629 scopus 로고    scopus 로고
    • Smartphone ownership and Internet usage continues to climb in emerging economies
    • Washington, DC
    • Poushter J. 2016. Smartphone ownership and Internet usage continues to climb in emerging economies. Rep., Pew Research Center,Washington, DC. http://www.pewglobal.org/2016/02/22/smartphoneownership-and-internet-usage-continues-to-climb-in-emerging-economies/
    • (2016) Rep., Pew Research Center
    • Poushter, J.1
  • 73
    • 10944248381 scopus 로고    scopus 로고
    • Language use of depressed and depression-vulnerable college students
    • Rude SS, Gortner EM, Pennebaker JW. 2004. Language use of depressed and depression-vulnerable college students. Cogn. Emot. 18:1121-33
    • (2004) Cogn. Emot , vol.18 , pp. 1121-1133
    • Rude, S.S.1    Gortner, E.M.2    Pennebaker, J.W.3
  • 74
    • 84991373429 scopus 로고    scopus 로고
    • The relationship between mobile phone location sensor data and depressive symptom severity
    • Saeb S, Lattie E, Schueller SM, Kording K,MohrDC. 2016. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 4:e2537
    • (2016) PeerJ , vol.4 , pp. e2537
    • Saeb, S.1    Lattie, E.2    Schueller, S.M.3    Kording, K.4    Mohr, D.C.5
  • 76
    • 84938573021 scopus 로고    scopus 로고
    • Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study
    • Saeb S, ZhangM, KarrCJ, Schueller SM, Corden ME, et al. 2015. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. J. Med. Internet Res. 17:e175
    • (2015) J. Med. Internet Res , vol.17 , pp. e175
    • Saeb, S.1    Zhang, M.2    Karr, C.J.3    Schueller, S.M.4    Corden, M.E.5
  • 77
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61:85-117
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 80
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Univ. Wisconsin, Madison
    • Settles B. 2010. Active learning literature survey. Comput. Sci. Tech. Rep. 1648, Univ. Wisconsin, Madison. http://burrsettles.com/pub/settles.activelearning.pdf
    • (2010) Comput. Sci. Tech. Rep. 1648
    • Settles, B.1
  • 81
    • 77954021717 scopus 로고    scopus 로고
    • Four billion little brothers? Privacy,mobile phones, and ubiquitous data collection
    • Shilton K. 2009. Four billion little brothers? Privacy,mobile phones, and ubiquitous data collection. Commun. ACM 52:48-53
    • (2009) Commun. ACM , vol.52 , pp. 48-53
    • Shilton, K.1
  • 82
    • 84975486643 scopus 로고    scopus 로고
    • We aren't all going to be on the same page about ethics": Ethical practices and challenges in research on digital and social media
    • Honolulu, HI. Washington, DC: IEEE
    • Shilton K, Sayles S. 2016. "We aren't all going to be on the same page about ethics": ethical practices and challenges in research on digital and social media. Proc. 2016 49th Hawaii Int. Conf. Syst. Sci., Honolulu, HI, pp. 1909-18. Washington, DC: IEEE
    • (2016) Proc. 2016 49th Hawaii Int. Conf. Syst. Sci. , pp. 1909-1918
    • Shilton, K.1    Sayles, S.2
  • 84
    • 0036156365 scopus 로고    scopus 로고
    • Assessment of activities of daily living with an ambulatory monitoring system: A comparative study in patients with chronic low back pain and nonsymptomatic controls
    • Spenkelink CD, Hutten MM, Hermens HJ, Greitemann BO. 2002. Assessment of activities of daily living with an ambulatory monitoring system: a comparative study in patients with chronic low back pain and nonsymptomatic controls. Clin. Rehabil. 16:16-26
    • (2002) Clin. Rehabil , vol.16 , pp. 16-26
    • Spenkelink, C.D.1    Hutten, M.M.2    Hermens, H.J.3    Greitemann, B.O.4
  • 87
    • 84856148882 scopus 로고    scopus 로고
    • Simple demographics often identify people uniquely
    • Carnegie Mellon Univ., Pittsburgh, PA
    • Sweeney L. 2000. Simple demographics often identify people uniquely. Data Priv. Work. Pap. 3, Carnegie Mellon Univ., Pittsburgh, PA
    • (2000) Data Priv. Work. Pap. 3
    • Sweeney, L.1
  • 89
    • 85014776794 scopus 로고    scopus 로고
    • New tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone research
    • Torous J, Kiang MV, Lorme J, Onnela JP. 2016. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Mental Health 3:e16
    • (2016) JMIR Mental Health , vol.3 , pp. e16
    • Torous, J.1    Kiang, M.V.2    Lorme, J.3    Onnela, J.P.4
  • 90
    • 80955158573 scopus 로고    scopus 로고
    • Associations of objectivelyassessed physical activity and sedentary time with depression:NHANES(2005-2006)
    • Vallance JK,Winkler EA, Gardiner PA, Healy GN, Lynch BM, Owen N. 2011. Associations of objectivelyassessed physical activity and sedentary time with depression:NHANES(2005-2006). Prev.Med. 53:284-88
    • (2011) Prev.Med , vol.53 , pp. 284-288
    • Vallance, J.K.1    Winkler, E.A.2    Gardiner, P.A.3    Healy, G.N.4    Lynch, B.M.5    Owen, N.6
  • 91
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11:3371-408
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 93
    • 84908602304 scopus 로고    scopus 로고
    • StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones
    • Seattle, WA. New York: Assoc. Comput. Mach
    • Wang R, Chen FL, Chen Z, Li TX, Farari G, et al. 2014. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. Proc. UbiComp '14: 2014 ACM Int. Joint Conf. Pervasive Ubiquitous Comput., Seattle, WA, pp. 3-14. New York: Assoc. Comput. Mach
    • (2014) Proc. UbiComp '14: 2014 ACM Int. Joint Conf. Pervasive Ubiquitous Comput , pp. 3-14
    • Wang, R.1    Chen, F.L.2    Chen, Z.3    Li, T.X.4    Farari, G.5
  • 95
    • 84908592910 scopus 로고    scopus 로고
    • Challenges and opportunites in data mining contact lists for inferring relationships
    • Seattle, WA, Sept. 13-17. New York: Assoc. Comput. Mach
    • Wiese J, Hong JI, Zimmerman J. 2014. Challenges and opportunites in data mining contact lists for inferring relationships. Proc. UbiComp '14: 2014 ACM Int. Joint Conf. Pervasive Ubiquitous Comput., Seattle, WA, Sept. 13-17, pp. 643-647. New York: Assoc. Comput. Mach
    • (2014) Proc. UbiComp '14: 2014 ACM Int. Joint Conf. Pervasive Ubiquitous Comput , pp. 643-647
    • Wiese, J.1    Hong, J.I.2    Zimmerman, J.3
  • 96
  • 97
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott L, Sejnowski TJ. 2002. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14:715-70
    • (2002) Neural Comput , vol.14 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 98
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, et al. 2015. The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1    Alipanahi, B.2    Lee, L.J.3    Bretschneider, H.4    Merico, D.5
  • 99
    • 84867466925 scopus 로고    scopus 로고
    • BodyScope: A wearable acoustic sensor for activity recognition
    • Pittsburgh, PA. New York: Assoc. Comput. Mach
    • Yatani K, Truong KN. 2012. BodyScope: a wearable acoustic sensor for activity recognition. Proc. UbiComp '12: 2012 ACM Conf. Ubiquitous Comput., Pittsburgh, PA, pp. 341-50. New York: Assoc. Comput. Mach
    • (2012) Proc. UbiComp '12: 2012 ACM Conf. Ubiquitous Comput , pp. 341-350
    • Yatani, K.1    Truong, K.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.