메뉴 건너뛰기




Volumn 36, Issue 1, 2008, Pages 28-63

Rodeo: Sparse, greedy nonparametric regression

Author keywords

Bandwidth estimation; Local linear smoothing; Minimax rates of convergence; Nonparametric regression; Sparsity; Variable selection

Indexed keywords


EID: 50649123582     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053607000000811     Document Type: Article
Times cited : (102)

References (31)
  • 1
    • 50549221799 scopus 로고    scopus 로고
    • BREIMAN, L., FRIEDMAN, J. H., OLSHEN. R. A. and STONE, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA. MR0726392
    • BREIMAN, L., FRIEDMAN, J. H., OLSHEN. R. A. and STONE, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA. MR0726392
  • 2
    • 33745125391 scopus 로고    scopus 로고
    • Sparse boosting
    • BÜP. and Yu, B. (2006). Sparse boosting. J. Mach. Learn. Res. 7 1001-1024.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1001-1024
    • BÜP1    Yu, B.2
  • 3
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm near-solution approximates the sparest near-solution
    • 1-norm near-solution approximates the sparest near-solution. Comm. Pure Appl. Math. 59 797-829.
    • (2004) Comm. Pure Appl. Math , vol.59 , pp. 797-829
    • DONOHO, D.1
  • 4
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression (with discussion)
    • MR2060166
    • EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499. MR2060166
    • (2004) Ann. Statist , vol.32 , pp. 407-499
    • EFRON, B.1    HASTIE, T.2    JOHNSTONE, I.3    TIBSHIRANI, R.4
  • 5
    • 84950423285 scopus 로고
    • Design-adaptive nonparametric regression
    • MR1209561
    • FAN, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998-1004. MR1209561
    • (1992) J. Amer. Statist. Assoc , vol.87 , pp. 998-1004
    • FAN, J.1
  • 6
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1360
    • FAN, J.1    LI, R.2
  • 7
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • MR2065194
    • FAN, J. and PENG, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. MR2065194
    • (2004) Ann. Statist , vol.32 , pp. 928-961
    • FAN, J.1    PENG, H.2
  • 8
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • MR1091842
    • FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines (with discussion). Ann. Statist. 19 1-141. MR1091842
    • (1991) Ann. Statist , vol.19 , pp. 1-141
    • FRIEDMAN, J.H.1
  • 9
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso type estimators
    • MR 1805787
    • FU, W. and KNIGHT, K. (2000). Asymptotics for lasso type estimators. Ann. Statist. 28 1356-1378. MR 1805787
    • (2000) Ann. Statist , vol.28 , pp. 1356-1378
    • FU, W.1    KNIGHT, K.2
  • 10
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • GEORGE, E. I. and MCCULLOCH, R. E. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7 339-373.
    • (1997) Statist. Sinica , vol.7 , pp. 339-373
    • GEORGE, E.I.1    MCCULLOCH, R.E.2
  • 11
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • GIROSI, F. (1997). An equivalence between sparse approximation and support vector machines. Neural Comput. 10 1455-1480.
    • (1997) Neural Comput , vol.10 , pp. 1455-1480
    • GIROSI, F.1
  • 13
    • 84972525897 scopus 로고
    • Local regression: Automatic kernel carpentry
    • HASTIE, T. and LOADER, C. (1993). Local regression: Automatic kernel carpentry. Statist. Sci. 8 120-129.
    • (1993) Statist. Sci , vol.8 , pp. 120-129
    • HASTIE, T.1    LOADER, C.2
  • 15
    • 0035528162 scopus 로고    scopus 로고
    • Structure adaptive approach for dimension reduction
    • MR 1891738
    • HRISTACHE, M., JUDITSKY, A., POLZEHL, J. and SPOKOINY, V. (2001). Structure adaptive approach for dimension reduction. Ann. Statist. 29 1537-1566. MR 1891738
    • (2001) Ann. Statist , vol.29 , pp. 1537-1566
    • HRISTACHE, M.1    JUDITSKY, A.2    POLZEHL, J.3    SPOKOINY, V.4
  • 16
    • 0035643281 scopus 로고    scopus 로고
    • Nonlinear estimation in anisotropic multi-index denoising
    • MR1863916
    • KERKYACHARIAN, K., LEPSKI, O. and PICARD, D. (2001). Nonlinear estimation in anisotropic multi-index denoising. Probab. Theory Related Fields 121 137-170. MR1863916
    • (2001) Probab. Theory Related Fields , vol.121 , pp. 137-170
    • KERKYACHARIAN, K.1    LEPSKI, O.2    PICARD, D.3
  • 18
    • 0031504935 scopus 로고    scopus 로고
    • Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable band-width selectors
    • MR 1447734
    • LEPSKI, O. V., MAMMEN, E. and SPOKOINY, V. G. (1997). Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable band-width selectors. Ann. Statist. 25 929-947. MR 1447734
    • (1997) Ann. Statist , vol.25 , pp. 929-947
    • LEPSKI, O.V.1    MAMMEN, E.2    SPOKOINY, V.G.3
  • 20
    • 0000006440 scopus 로고
    • Bandwidth choice for nonparametric regression
    • MR0760684
    • RICE, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230. MR0760684
    • (1984) Ann. Statist , vol.12 , pp. 1215-1230
    • RICE, J.1
  • 21
    • 0010027636 scopus 로고    scopus 로고
    • Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation
    • MR1482136
    • RUPPERT, D. (1997). Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. J. Amer: Statist. Assoc. 92 1049-1062. MR1482136
    • (1997) J. Amer: Statist. Assoc , vol.92 , pp. 1049-1062
    • RUPPERT, D.1
  • 22
    • 21844518517 scopus 로고
    • Multivariate locally weighted least squares regression
    • MR1311979
    • RUPPERT, D. and WAND, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346-1370. MR1311979
    • (1994) Ann. Statist , vol.22 , pp. 1346-1370
    • RUPPERT, D.1    WAND, M.P.2
  • 23
    • 20444437254 scopus 로고    scopus 로고
    • Component identification and estimation in nonlinear high-dimensional regression models by structural adaptation
    • MR2160548
    • SAMAROV, A., SPOKOINY, V. and VIAL, C. (2005). Component identification and estimation in nonlinear high-dimensional regression models by structural adaptation. J. Amer: Statist. Assoc. 100 429-445. MR2160548
    • (2005) J. Amer: Statist. Assoc , vol.100 , pp. 429-445
    • SAMAROV, A.1    SPOKOINY, V.2    VIAL, C.3
  • 25
    • 0031484203 scopus 로고    scopus 로고
    • Polynomial splines and their tensor products in extended linear modeling (with discussion)
    • MR 1463561
    • STONE, C. J., HANSEN, M. H., KOOPERBERG, C. and TRUONG, Y. K. (1997). Polynomial splines and their tensor products in extended linear modeling (with discussion). Ann. Statist. 25 1371-1470. MR 1463561
    • (1997) Ann. Statist , vol.25 , pp. 1371-1470
    • STONE, C.J.1    HANSEN, M.H.2    KOOPERBERG, C.3    TRUONG, Y.K.4
  • 26
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR 1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 58 267-288. MR 1379242
    • (1996) J. Roy. Stat. Soc. Ser. B Stat. Methodol , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 27
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • MR1875838
    • TIPPING, M. (2001). Sparse Bayesian learning and the relevance vector machine. J. Machine Learning Research 1 211-244. MR1875838
    • (2001) J. Machine Learning Research , vol.1 , pp. 211-244
    • TIPPING, M.1
  • 28
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • MR2097044
    • TROPP, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50 2231-2241. MR2097044
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2231-2241
    • TROPP, J.A.1
  • 29
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals
    • MR2238069
    • TROPP, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals. IEEE Trans. Inform. Theory 51 1030-1051. MR2238069
    • (2006) IEEE Trans. Inform. Theory , vol.51 , pp. 1030-1051
    • TROPP, J.A.1
  • 30
    • 50649099206 scopus 로고    scopus 로고
    • Discussion of "Least angle regression" by Efron, Hastie, Jonstone and Tibshirani
    • MR2060166
    • TURLACH, B. (2004). Discussion of "Least angle regression" by Efron, Hastie, Jonstone and Tibshirani. Ann. Statist. 32 494-499. MR2060166
    • (2004) Ann. Statist , vol.32 , pp. 494-499
    • TURLACH, B.1
  • 31


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.