메뉴 건너뛰기




Volumn 110, Issue 510, 2015, Pages 583-598

New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes

Author keywords

Classification; Personalized medicine; Q learning; Reinforcement learning; Risk bound; Support vector machine

Indexed keywords


EID: 84936797778     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2014.937488     Document Type: Article
Times cited : (234)

References (54)
  • 2
    • 0003787146 scopus 로고
    • Princeton, NJ: Princeton University Press
    • R.Bellman, (1957), Dynamic Programming, Princeton, NJ: Princeton University Press.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 5
    • 0002709342 scopus 로고    scopus 로고
    • Feature Selection via Concave Minimization and Support Vector Machines
    • San Francisco, CA: Morgan Kaufmann Publishers Inc
    • P.S.Bradley,, and O.L.Mangasarian, (1998), “Feature Selection via Concave Minimization and Support Vector Machines,” in Proceedings 15th International Conference on Machine Learning, San Francisco, CA: Morgan Kaufmann Publishers Inc.
    • (1998) Proceedings 15th International Conference on Machine Learning
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 9
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • C.Cortes,, and V.Vapnik, (1995), “Support-Vector Networks,” Machine Learning, 20, 273–297.
    • (1995) Machine Learning , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 7744234104 scopus 로고    scopus 로고
    • Placebo-Free Designs for Evaluating New Mental Health Treatments: The Use of Adaptive Treatment Strategies
    • R.Dawson,, P.Lavori, (2004), Placebo-Free Designs for Evaluating New Mental Health Treatments: The Use of Adaptive Treatment Strategies, Statistics in Medicine, 23, 3249–3262.
    • (2004) Statistics in Medicine , vol.23 , pp. 3249-3262
    • Dawson, R.1    Lavori, P.2
  • 15
    • 0034364917 scopus 로고    scopus 로고
    • A Design for Testing Clinical Strategies: Biased Adaptive Within-Subject Randomization
    • P.W.Lavori,, R.Dawson, (2000), A Design for Testing Clinical Strategies: Biased Adaptive Within-Subject Randomization, Journal of The Royal Statistical Society, Series A, 163, 29–38.
    • (2000) Journal of The Royal Statistical Society , vol.163 , pp. 29-38
    • Lavori, P.W.1    Dawson, R.2
  • 16
    • 85047692405 scopus 로고    scopus 로고
    • Dynamic Treatment Regimes: Practical Design Considerations
    • (2004), Dynamic Treatment Regimes: Practical Design Considerations, Clinical Trials, 1, 9–20.
    • (2004) Clinical Trials , vol.1 , pp. 9-20
  • 19
    • 33947624563 scopus 로고    scopus 로고
    • Demystifying Optimal Dynamic Treatment Regimes
    • E.E.M.Moodie,, T.S.Richardson,, D.A.Stephens, (2007), Demystifying Optimal Dynamic Treatment Regimes, Biometrics, 63, 447–455.
    • (2007) Biometrics , vol.63 , pp. 447-455
    • Moodie, E.E.M.1    Richardson, T.S.2    Stephens, D.A.3
  • 21
    • 19144362679 scopus 로고    scopus 로고
    • An Experimental Design for the Development of Adaptive Treatment Strategies
    • (2005a), An Experimental Design for the Development of Adaptive Treatment Strategies, Statistics in Medicine, 24, 1455–1481.
    • (2005) Statistics in Medicine , vol.24 , pp. 1455-1481
  • 22
    • 23244437791 scopus 로고    scopus 로고
    • A Generalization Error for Q-Learning
    • (2005b), A Generalization Error for Q-Learning, Journal of Machine Learning Research, 6, 1073–1097.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1073-1097
  • 23
    • 33846260190 scopus 로고    scopus 로고
    • Methodological Challenges in Constructing Effective Treatment Sequences for Chronic Psychiatric Disorders
    • S.A.Murphy,, D.W.Oslin,, A.J.Rush,, J.Zhu,, (2007), Methodological Challenges in Constructing Effective Treatment Sequences for Chronic Psychiatric Disorders, Neuropsychopharmacology, 32, 257–262.
    • (2007) Neuropsychopharmacology , vol.32 , pp. 257-262
    • Murphy, S.A.1    Oslin, D.W.2    Rush, A.J.3    Zhu, J.4
  • 26
    • 84895870079 scopus 로고    scopus 로고
    • Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content
    • L.Orellana,, A.Rotnitzky,, J.M.Robins, (2010), Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content, The International Journal of Biostatistics, 6, 1–47.
    • (2010) The International Journal of Biostatistics , vol.6 , pp. 1-47
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.M.3
  • 27
    • 34047273906 scopus 로고    scopus 로고
    • Constructing Evidence-Based Treatment Strategies Using Methods From Computer Science
    • J.Pineau,, M.G.Bellemare,, A.Ghizaru,, S.A.Murphy, (2007), Constructing Evidence-Based Treatment Strategies Using Methods From Computer Science, Drug and Alcohol Dependence, 88S, S52–S60.
    • (2007) Drug and Alcohol Dependence , vol.88S , pp. 52-60
    • Pineau, J.1    Bellemare, M.G.2    Ghizaru, A.3    Murphy, S.A.4
  • 28
    • 84870707096 scopus 로고    scopus 로고
    • Performance Guarantees for Individua-lized Treatment Rules
    • M.Qian,, S.A.Murphy, (2011), Performance Guarantees for Individua-lized Treatment Rules, The Annals of Statistics, 39, 1180–1210.
    • (2011) The Annals of Statistics , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 29
    • 46149139403 scopus 로고
    • A New Approach to Causal Inference in Mortality Studies With a Sustained Exposure Period Application to Control of the Healthy Worker Survivor Effect
    • J.M.Robins, (1986), A New Approach to Causal Inference in Mortality Studies With a Sustained Exposure Period Application to Control of the Healthy Worker Survivor Effect, Mathematical Modelling, 7, 1393–1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.M.1
  • 30
    • 33845913126 scopus 로고    scopus 로고
    • Optimal Structural Nested Models for Optimal Sequential Decisions
    • eds. D. Y. Lin and P. J. Heagerty, New York:, Springer
    • ——— (2004), “Optimal Structural Nested Models for Optimal Sequential Decisions,” in Proceedings of the Second Seattle Symposium on Biostatistics, eds. D. Y. Lin and P. J. Heagerty, New York:Springer, pp. 189–326.
    • (2004) Proceedings of the Second Seattle Symposium on Biostatistics , pp. 189-326
  • 31
    • 77951622706 scopus 로고
    • The Central Role of the Propensity Score in Observational Studies for Causal Effects
    • P.R.Rosenbaum,, D.B.Rubin, (1983), The Central Role of the Propensity Score in Observational Studies for Causal Effects, Biometrika, 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 32
    • 58149417330 scopus 로고
    • Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies
    • D.B.Rubin, (1974), Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies, Journal of the Educational Psychology, 66, 688–701.
    • (1974) Journal of the Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 33
    • 0002531157 scopus 로고
    • Bayesian Inference for Causal Effects: The Role of Randomization
    • ——— (1978), Bayesian Inference for Causal Effects: The Role of Randomization, The Annals of Statistics, 6, 34–58.
    • (1978) The Annals of Statistics , vol.6 , pp. 34-58
  • 34
    • 84921477485 scopus 로고    scopus 로고
    • Q- and A-Learning Methods for Estimating Optimal Dynamic Treatment Regimes
    • in press
    • P.J.Schulte,, A.A.Tsiatis,, E.B.Laber,, and M.Davidian, (2014), “Q- and A-Learning Methods for Estimating Optimal Dynamic Treatment Regimes,” Statistical Science, in press.
    • (2014) Statistical Science
    • Schulte, P.J.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 35
    • 79958787689 scopus 로고    scopus 로고
    • Informing Sequential Clinical Decision-Making Through Reinforcement Learning: An Empirical Study
    • S.M.Shortreed,, E.Laber,, D.J.Lizotte,, T.S.Stroup,, J.Pineau,, S.A.Murphy, (2011), Informing Sequential Clinical Decision-Making Through Reinforcement Learning: An Empirical Study, Machine Learning, 84, 109–136.
    • (2011) Machine Learning , vol.84 , pp. 109-136
    • Shortreed, S.M.1    Laber, E.2    Lizotte, D.J.3    Stroup, T.S.4    Pineau, J.5    Murphy, S.A.6
  • 36
    • 36849051803 scopus 로고    scopus 로고
    • Duration of First-Line Chemotherapy in Advanced Non Small-Cell Lung Cancer: Less is More in the Era of Effective Subsequent Therapies
    • M.Socinski,, T.Stinchcombe, (2007), Duration of First-Line Chemotherapy in Advanced Non Small-Cell Lung Cancer: Less is More in the Era of Effective Subsequent Therapies, Journal of Clinical Oncology, 25, 5155–5157.
    • (2007) Journal of Clinical Oncology , vol.25 , pp. 5155-5157
    • Socinski, M.1    Stinchcombe, T.2
  • 37
    • 84972526326 scopus 로고
    • On the Application of Probability Theory to Agricultural Experiments
    • Engl. transl. by D. M. Dabrowska and T. P. Speed
    • J.Splawa-Neyman,, D.Dabrowska,, T.Speed, (1990), On the Application of Probability Theory to Agricultural Experiments (Engl. transl. by D. M. Dabrowska and T. P. Speed), Statistical Science, 5, 465–472.
    • (1990) Statistical Science , vol.5 , pp. 465-472
    • Splawa-Neyman, J.1    Dabrowska, D.2    Speed, T.3
  • 38
    • 34247197035 scopus 로고    scopus 로고
    • Fast Rates for Support Vector Machines using Gaussian Kernels
    • I.Steinwart,, C.Scovel, (2007), Fast Rates for Support Vector Machines using Gaussian Kernels, The Annals of Statistics, 35, 575–607.
    • (2007) The Annals of Statistics , vol.35 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 41
    • 0034732660 scopus 로고    scopus 로고
    • Evaluating Multiple Treatment Courses in Clinical Trials
    • P.F.Thall,, R.E.Millikan,, H.G.Sung, (2000), Evaluating Multiple Treatment Courses in Clinical Trials, Statistics in Medicine, 19, 1011–1028.
    • (2000) Statistics in Medicine , vol.19 , pp. 1011-1028
    • Thall, P.F.1    Millikan, R.E.2    Sung, H.G.3
  • 42
    • 0036489042 scopus 로고    scopus 로고
    • Selecting Therapeutic Strategies Based on Efficacy and Death in Multicourse Clinical Trials
    • P.F.Thall,, H.-G.Sung,, E.H.Estey, (2002), Selecting Therapeutic Strategies Based on Efficacy and Death in Multicourse Clinical Trials, Journal of the American Statistical Association, 97, 29–39.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 29-39
    • Thall, P.F.1    Sung, H.-G.2    Estey, E.H.3
  • 43
    • 35648935906 scopus 로고    scopus 로고
    • Bayesian and Frequentist Two-Stage Treatment Strategies Based on Sequential Failure Times Subject to Interval Censoring
    • P.F.Thall,, L.H.Wooten,, C.J.Logothetis,, R.E.Millikan,, N.M.Tannir, (2007), Bayesian and Frequentist Two-Stage Treatment Strategies Based on Sequential Failure Times Subject to Interval Censoring, Statistics in Medicine, 26, 4687–4702.
    • (2007) Statistics in Medicine , vol.26 , pp. 4687-4702
    • Thall, P.F.1    Wooten, L.H.2    Logothetis, C.J.3    Millikan, R.E.4    Tannir, N.M.5
  • 44
    • 3142725508 scopus 로고    scopus 로고
    • Optimal Aggregation of Classifiers in Statistical Learning
    • A.B.Tsybakov, (2004), Optimal Aggregation of Classifiers in Statistical Learning, The Annals of Statistics, 32, 135–166.
    • (2004) The Annals of Statistics , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 46
    • 40249094631 scopus 로고    scopus 로고
    • Probability Estimation for Large-Margin Classifiers
    • J.Wang,, X.Shen,, Y.Liu, (2008), Probability Estimation for Large-Margin Classifiers, Biometrika, 95, 149–167.
    • (2008) Biometrika , vol.95 , pp. 149-167
    • Wang, J.1    Shen, X.2    Liu, Y.3
  • 48
    • 84906088229 scopus 로고    scopus 로고
    • Estimating Optimal Treatment Regimes From a Classification Perspective
    • B.Zhang,, A.A.Tsiatis,, M.Davidian,, M.Zhang,, E.Laber, (2012a), Estimating Optimal Treatment Regimes From a Classification Perspective, Statistics, 1, 103–114.
    • (2012) Statistics , vol.1 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 49
    • 84871667403 scopus 로고    scopus 로고
    • A Robust Method for Estimating Optimal Treatment Regimes
    • B.Zhang,, A.A.Tsiatis,, E.B.Laber,, M.Davidian, (2012b), A Robust Method for Estimating Optimal Treatment Regimes, Biometrics, 68, 1010–1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 50
    • 84882733659 scopus 로고    scopus 로고
    • Robust Estimation of Optimal Dynamic Treatment Regimes for Sequential Treatment Decisions
    • (2013), Robust Estimation of Optimal Dynamic Treatment Regimes for Sequential Treatment Decisions, Biometrika, 100, 681–694.
    • (2013) Biometrika , vol.100 , pp. 681-694
  • 51
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement Learning Design for Cancer Clinical Trials
    • Y.Q.Zhao,, M.R.Kosorok,, D.Zeng, (2009), Reinforcement Learning Design for Cancer Clinical Trials, Statistics in Medicine, 28, 3294–3315.
    • (2009) Statistics in Medicine , vol.28 , pp. 3294-3315
    • Zhao, Y.Q.1    Kosorok, M.R.2    Zeng, D.3
  • 52
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer
    • Y.Q.Zhao,, D.Zeng,, M.A.Socinski,, M.R.Kosorok, (2011), Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer, Biometrics, 67, 1422–1433.
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.Q.1    Zeng, D.2    Socinski, M.A.3    Kosorok, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.