-
1
-
-
84855708946
-
Biogenesis and functions of lipid droplets in plants thematic review series: lipid droplet synthesis and metabolism: from yeast to man
-
Chapman, K.D., et al. Biogenesis and functions of lipid droplets in plants thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J. Lipid Res. 53 (2012), 215–226.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 215-226
-
-
Chapman, K.D.1
-
2
-
-
84862668222
-
The dynamic roles of intracellular lipid droplets: from archaea to mammals
-
Murphy, D.J., The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249 (2012), 541–585.
-
(2012)
Protoplasma
, vol.249
, pp. 541-585
-
-
Murphy, D.J.1
-
3
-
-
84904647870
-
Cytosolic lipid droplets: from mechanisms of fat storage to disease
-
Gross, D.A., Silver, D.L., Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Biol. 49 (2014), 304–326.
-
(2014)
Crit. Rev. Biochem. Biol.
, vol.49
, pp. 304-326
-
-
Gross, D.A.1
Silver, D.L.2
-
4
-
-
84939983589
-
Microalgal lipid droplets: composition, diversity, biogenesis and functions
-
Goold, H., et al. Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep. 34 (2015), 545–555.
-
(2015)
Plant Cell Rep.
, vol.34
, pp. 545-555
-
-
Goold, H.1
-
6
-
-
84933277490
-
Lipid droplet dynamics in budding yeast
-
Wang, C.W., Lipid droplet dynamics in budding yeast. Cell. Mol. Life Sci. 72 (2015), 2677–2695.
-
(2015)
Cell. Mol. Life Sci.
, vol.72
, pp. 2677-2695
-
-
Wang, C.W.1
-
7
-
-
85010874857
-
The why, when and how of lipid droplet diversity
-
Thiam, A.R., Beller, M., The why, when and how of lipid droplet diversity. J. Cell Sci. 130 (2017), 315–324.
-
(2017)
J. Cell Sci.
, vol.130
, pp. 315-324
-
-
Thiam, A.R.1
Beller, M.2
-
8
-
-
84888367601
-
The biophysics and cell biology of lipid droplets
-
Thiam, A.R., et al. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14 (2013), 775–786.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 775-786
-
-
Thiam, A.R.1
-
9
-
-
84892678440
-
Open questions in lipid droplet biology
-
Ohsaki, Y., et al. Open questions in lipid droplet biology. Chem. Biol. 21 (2014), 86–96.
-
(2014)
Chem. Biol.
, vol.21
, pp. 86-96
-
-
Ohsaki, Y.1
-
10
-
-
84935005440
-
The role of plastoglobules in thylakoid lipid remodeling during plant development
-
Rottet, S., et al. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim. Biophys. Acta 1847 (2015), 889–899.
-
(2015)
Biochim. Biophys. Acta
, vol.1847
, pp. 889-899
-
-
Rottet, S.1
-
11
-
-
84874970047
-
Lipid metabolism in microalgae distinguishes itself
-
Liu, B., Benning, C., Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotechnol. 24 (2013), 300–309.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 300-309
-
-
Liu, B.1
Benning, C.2
-
12
-
-
84975706443
-
Stress-induced neutral lipid biosynthesis in microalgae − molecular, cellular and physiological insights
-
Zienkiewicz, K., et al. Stress-induced neutral lipid biosynthesis in microalgae − molecular, cellular and physiological insights. Biochim. Biophys. Acta 1861 (2016), 1269–1281.
-
(2016)
Biochim. Biophys. Acta
, vol.1861
, pp. 1269-1281
-
-
Zienkiewicz, K.1
-
13
-
-
84965166295
-
Liquid–liquid phase separation of oil bodies from seeds
-
Nykiforuk, C.L., Liquid–liquid phase separation of oil bodies from seeds. Methods Mol. Biol. 1385 (2016), 173–188.
-
(2016)
Methods Mol. Biol.
, vol.1385
, pp. 173-188
-
-
Nykiforuk, C.L.1
-
14
-
-
0030113124
-
Oleosins and oil bodies in seeds and other organs
-
Huang, A.H., Oleosins and oil bodies in seeds and other organs. Plant Physiol., 110, 1996, 1055.
-
(1996)
Plant Physiol.
, vol.110
, pp. 1055
-
-
Huang, A.H.1
-
15
-
-
84940007641
-
The characteristics and potential applications of structural lipid droplet proteins in plants
-
Laibach, N., et al. The characteristics and potential applications of structural lipid droplet proteins in plants. J. Biotechnol. 201 (2015), 15–27.
-
(2015)
J. Biotechnol.
, vol.201
, pp. 15-27
-
-
Laibach, N.1
-
16
-
-
33747489319
-
The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis
-
Siloto, R.M., et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18 (2006), 1961–1974.
-
(2006)
Plant Cell
, vol.18
, pp. 1961-1974
-
-
Siloto, R.M.1
-
17
-
-
72449165108
-
Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes
-
Schmidt, M.A., Herman, E.M., Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol. Plant. 1 (2008), 910–924.
-
(2008)
Mol. Plant.
, vol.1
, pp. 910-924
-
-
Schmidt, M.A.1
Herman, E.M.2
-
18
-
-
49849106327
-
A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana
-
Shimada, T.L., et al. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J. 55 (2008), 798–809.
-
(2008)
Plant J.
, vol.55
, pp. 798-809
-
-
Shimada, T.L.1
-
19
-
-
77649191491
-
Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms
-
Wu, Y.Y., et al. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol. Biochem. 48 (2010), 81–89.
-
(2010)
Plant Physiol. Biochem.
, vol.48
, pp. 81-89
-
-
Wu, Y.Y.1
-
20
-
-
84898730657
-
Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds
-
Miquel, M., et al. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol. 164 (2014), 1866–1878.
-
(2014)
Plant Physiol.
, vol.164
, pp. 1866-1878
-
-
Miquel, M.1
-
21
-
-
64749114293
-
Storage oil hydrolysis during early seedling growth
-
Quettier, A.L., Eastmond, P.J., Storage oil hydrolysis during early seedling growth. Plant Physiol. Biochem. 47 (2009), 485–490.
-
(2009)
Plant Physiol. Biochem.
, vol.47
, pp. 485-490
-
-
Quettier, A.L.1
Eastmond, P.J.2
-
22
-
-
84875725099
-
Oleosin of subcellular lipid droplets evolved in green algae
-
Huang, N.L., et al. Oleosin of subcellular lipid droplets evolved in green algae. Plant Physiol. 161 (2013), 1862–1874.
-
(2013)
Plant Physiol.
, vol.161
, pp. 1862-1874
-
-
Huang, N.L.1
-
23
-
-
84940904951
-
Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants
-
Huang, M.D., Huang, A.H., Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants. Plant Physiol. 169 (2015), 453–470.
-
(2015)
Plant Physiol.
, vol.169
, pp. 453-470
-
-
Huang, M.D.1
Huang, A.H.2
-
24
-
-
84890560014
-
Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection
-
Sztalryd, C., Kimmel, A.R., Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 96 (2014), 96–101.
-
(2014)
Biochimie
, vol.96
, pp. 96-101
-
-
Sztalryd, C.1
Kimmel, A.R.2
-
25
-
-
84880986167
-
Identification of a new class of lipid droplet-associated proteins in plants
-
Horn, P.J., et al. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol. 162 (2013), 1926–1936.
-
(2013)
Plant Physiol.
, vol.162
, pp. 1926-1936
-
-
Horn, P.J.1
-
26
-
-
84975230370
-
Highlights on Hevea brasiliensis (pro)hevein proteins
-
Berthelot, K., et al. Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 127 (2016), 258–270.
-
(2016)
Biochimie
, vol.127
, pp. 258-270
-
-
Berthelot, K.1
-
27
-
-
84890896146
-
Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells
-
Gidda, S.K., et al. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. Plant Signal. Behav., 8, 2013, e27141.
-
(2013)
Plant Signal. Behav.
, vol.8
, pp. e27141
-
-
Gidda, S.K.1
-
28
-
-
84962119094
-
Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells
-
Gidda, S.K., et al. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol. 170 (2016), 2052–2071.
-
(2016)
Plant Physiol.
, vol.170
, pp. 2052-2071
-
-
Gidda, S.K.1
-
29
-
-
84876339644
-
Commentary: why don't plant leaves get fat?
-
Chapman, K.D., et al. Commentary: why don't plant leaves get fat?. Plant Sci. 207 (2013), 128–134.
-
(2013)
Plant Sci.
, vol.207
, pp. 128-134
-
-
Chapman, K.D.1
-
30
-
-
84960432012
-
The breakdown of stored triacylglycerols is required during light-induced stomatal opening
-
McLachlan, D.H., et al. The breakdown of stored triacylglycerols is required during light-induced stomatal opening. Curr. Biol. 26 (2016), 707–712.
-
(2016)
Curr. Biol.
, vol.26
, pp. 707-712
-
-
McLachlan, D.H.1
-
31
-
-
80053923102
-
Cloning and characterization of the new multiple stress responsible gene I (MuSI) from sweet potato
-
Seo, S.G., et al. Cloning and characterization of the new multiple stress responsible gene I (MuSI) from sweet potato. Genes Genomics 32 (2010), 544–552.
-
(2010)
Genes Genomics
, vol.32
, pp. 544-552
-
-
Seo, S.G.1
-
32
-
-
84962090739
-
Arabidopsis small rubber particle protein homolog SRPs play dual roles as positive factors for tissue growth and development and in drought stress responses
-
Kim, E.Y., et al. Arabidopsis small rubber particle protein homolog SRPs play dual roles as positive factors for tissue growth and development and in drought stress responses. Plant Physiol. 170 (2016), 2494–2510.
-
(2016)
Plant Physiol.
, vol.170
, pp. 2494-2510
-
-
Kim, E.Y.1
-
33
-
-
77952549609
-
Constitutive expression of CaSRP1, a hot pepper small rubber particle protein homolog, resulted in fast growth and improved drought tolerance in transgenic Arabidopsis plants
-
Kim, E.Y., et al. Constitutive expression of CaSRP1, a hot pepper small rubber particle protein homolog, resulted in fast growth and improved drought tolerance in transgenic Arabidopsis plants. Planta 232 (2010), 71–83.
-
(2010)
Planta
, vol.232
, pp. 71-83
-
-
Kim, E.Y.1
-
34
-
-
84880083087
-
Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome
-
Jolivet, P., et al. Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome. Proteomics 13 (2013), 1836–1849.
-
(2013)
Proteomics
, vol.13
, pp. 1836-1849
-
-
Jolivet, P.1
-
35
-
-
84919341476
-
Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content
-
Liu, H., et al. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J. Proteomics. 113 (2015), 403–414.
-
(2015)
J. Proteomics.
, vol.113
, pp. 403-414
-
-
Liu, H.1
-
36
-
-
84969706272
-
OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice
-
Zhang, Z., et al. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. Plant Sci. 249 (2016), 35–45.
-
(2016)
Plant Sci.
, vol.249
, pp. 35-45
-
-
Zhang, Z.1
-
37
-
-
84891773456
-
Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis
-
Shimada, T.L., et al. Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol. 164 (2014), 105–118.
-
(2014)
Plant Physiol.
, vol.164
, pp. 105-118
-
-
Shimada, T.L.1
-
38
-
-
84934988391
-
Leaf oil bodies are subcellular factories producing antifungal oxylipins
-
Shimada, T.L., Hara-Nishimura, I., Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr. Opin. Plant Biol. 25 (2015), 145–150.
-
(2015)
Curr. Opin. Plant Biol.
, vol.25
, pp. 145-150
-
-
Shimada, T.L.1
Hara-Nishimura, I.2
-
39
-
-
78651269018
-
RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana
-
Aubert, Y., et al. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol. 51 (2010), 1975–1987.
-
(2010)
Plant Cell Physiol.
, vol.51
, pp. 1975-1987
-
-
Aubert, Y.1
-
40
-
-
79956125692
-
A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis
-
Kim, Y.Y., et al. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Plant Cell Physiol. 52 (2011), 874–884.
-
(2011)
Plant Cell Physiol.
, vol.52
, pp. 874-884
-
-
Kim, Y.Y.1
-
41
-
-
84897597120
-
The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size
-
López-Ribera, I., et al. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. Plant Physiol. 164 (2014), 1237–1249.
-
(2014)
Plant Physiol.
, vol.164
, pp. 1237-1249
-
-
López-Ribera, I.1
-
42
-
-
85014301785
-
Oil biosynthesis in underground oil-rich storage vegetative tissue: comparison of Cyperus esculentus tuber with oil seeds and fruits
-
Yang, Z., et al. Oil biosynthesis in underground oil-rich storage vegetative tissue: comparison of Cyperus esculentus tuber with oil seeds and fruits. Plant Cell Physiol. 57 (2016), 2519–2540.
-
(2016)
Plant Cell Physiol.
, vol.57
, pp. 2519-2540
-
-
Yang, Z.1
-
43
-
-
84920175917
-
Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil
-
Davidi, L., et al. Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol. 167 (2015), 60–79.
-
(2015)
Plant Physiol.
, vol.167
, pp. 60-79
-
-
Davidi, L.1
-
44
-
-
84879872506
-
The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage
-
Thiel, K., et al. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J. Cell Sci. 126 (2013), 2198–2212.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2198-2212
-
-
Thiel, K.1
-
45
-
-
0034941121
-
Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13
-
Magré, J., et al. Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28 (2001), 365–370.
-
(2001)
Nat. Genet.
, vol.28
, pp. 365-370
-
-
Magré, J.1
-
46
-
-
38049184643
-
The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology
-
Szymanski, K.M., et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. U. S. A. 104 (2007), 20890–20895.
-
(2007)
Proc. Natl Acad. Sci. U. S. A.
, vol.104
, pp. 20890-20895
-
-
Szymanski, K.M.1
-
47
-
-
39049151385
-
Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast
-
Fei, W., et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180 (2008), 473–482.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 473-482
-
-
Fei, W.1
-
48
-
-
84988807217
-
Seipin is required for converting nascent to mature lipid droplets
-
Wang, H., et al. Seipin is required for converting nascent to mature lipid droplets. Elife, 5, 2016, e16582.
-
(2016)
Elife
, vol.5
, pp. e16582
-
-
Wang, H.1
-
49
-
-
84943740201
-
Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation
-
Cai, Y., et al. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell 27 (2015), 2616–2636.
-
(2015)
Plant Cell
, vol.27
, pp. 2616-2636
-
-
Cai, Y.1
-
50
-
-
84970973731
-
The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites
-
Grippa, A., et al. The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites. J. Cell Biol. 211 (2015), 829–844.
-
(2015)
J. Cell Biol.
, vol.211
, pp. 829-844
-
-
Grippa, A.1
-
51
-
-
84949209639
-
Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p ΔNterm only in combination with Ldb16p
-
Han, S., et al. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p ΔNterm only in combination with Ldb16p. BMC Cell Biol., 16, 2015, 29.
-
(2015)
BMC Cell Biol.
, vol.16
, pp. 29
-
-
Han, S.1
-
52
-
-
85006060196
-
Seipin regulates ER–lipid droplet contacts and cargo delivery
-
Salo, V.T., et al. Seipin regulates ER–lipid droplet contacts and cargo delivery. EMBO J. 35 (2016), 2699–2716.
-
(2016)
EMBO J.
, vol.35
, pp. 2699-2716
-
-
Salo, V.T.1
-
53
-
-
78650388357
-
Seipin is a discrete homooligomer
-
Binns, D., et al. Seipin is a discrete homooligomer. Biochemistry 49 (2010), 10747–10755.
-
(2010)
Biochemistry
, vol.49
, pp. 10747-10755
-
-
Binns, D.1
-
54
-
-
84922780683
-
Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology
-
Cartwright, B.R., et al. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26 (2015), 726–739.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 726-739
-
-
Cartwright, B.R.1
-
55
-
-
78049248112
-
Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants
-
James, C.N., et al. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proc. Natl Acad. Sci. U. S. A. 107 (2010), 17833–17838.
-
(2010)
Proc. Natl Acad. Sci. U. S. A.
, vol.107
, pp. 17833-17838
-
-
James, C.N.1
-
56
-
-
0016096382
-
Ichthyosiform dermatosis with systemic lipidosis
-
Dorfman, M.L., et al. Ichthyosiform dermatosis with systemic lipidosis. Arch. Dermatol. 110 (1974), 261–266.
-
(1974)
Arch. Dermatol.
, vol.110
, pp. 261-266
-
-
Dorfman, M.L.1
-
57
-
-
0034764272
-
Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin–Dorfman syndrome
-
Lefèvre, C., et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin–Dorfman syndrome. Am. J. Hum. Genet. 69 (2001), 1002–1012.
-
(2001)
Am. J. Hum. Genet.
, vol.69
, pp. 1002-1012
-
-
Lefèvre, C.1
-
58
-
-
67349265779
-
Chanarin–Dorfman syndrome: deficiency in CGI -58, a lipid droplet-bound coactivator of lipase
-
Yamaguchi, T., Osumi, T., Chanarin–Dorfman syndrome: deficiency in CGI -58, a lipid droplet-bound coactivator of lipase. Biochim. Biophys. Acta 1791 (2009), 519–523.
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 519-523
-
-
Yamaguchi, T.1
Osumi, T.2
-
59
-
-
84951573077
-
Lipid droplet mobilization: the different ways to loosen the purse strings
-
D'Andrea, S., Lipid droplet mobilization: the different ways to loosen the purse strings. Biochimie 120 (2016), 17–27.
-
(2016)
Biochimie
, vol.120
, pp. 17-27
-
-
D'Andrea, S.1
-
60
-
-
4744341229
-
Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes
-
Subramanian, V., et al. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J. Biol. Chem. 279 (2004), 42062–42071.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 42062-42071
-
-
Subramanian, V.1
-
61
-
-
3142738035
-
CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome
-
Yamaguchi, T., et al. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome. J. Biol. Chem. 279 (2004), 30490–30497.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 30490-30497
-
-
Yamaguchi, T.1
-
62
-
-
84879483748
-
The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis
-
Park, S., et al. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell 25 (2013), 1726–1739.
-
(2013)
Plant Cell
, vol.25
, pp. 1726-1739
-
-
Park, S.1
-
63
-
-
0035201037
-
The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation
-
Zolman, B.K., et al. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol. 127 (2001), 1266–1278.
-
(2001)
Plant Physiol.
, vol.127
, pp. 1266-1278
-
-
Zolman, B.K.1
-
64
-
-
0037124376
-
Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP
-
Footitt, S., et al. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21 (2002), 2912–2922.
-
(2002)
EMBO J.
, vol.21
, pp. 2912-2922
-
-
Footitt, S.1
-
65
-
-
0036008342
-
Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation
-
Hayashi, M., et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation. Plant Cell Physiol. 43 (2002), 1–11.
-
(2002)
Plant Cell Physiol.
, vol.43
, pp. 1-11
-
-
Hayashi, M.1
-
66
-
-
70849102767
-
The ABC transporter PXA1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness
-
Kunz, H.H., et al. The ABC transporter PXA1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21 (2009), 2733–2749.
-
(2009)
Plant Cell
, vol.21
, pp. 2733-2749
-
-
Kunz, H.H.1
-
67
-
-
68849105129
-
Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways
-
Slocombe, S.P., et al. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol. J. 7 (2009), 694–703.
-
(2009)
Plant Biotechnol. J.
, vol.7
, pp. 694-703
-
-
Slocombe, S.P.1
-
68
-
-
33646842826
-
SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds
-
Eastmond, P.J., SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18 (2006), 665–675.
-
(2006)
Plant Cell
, vol.18
, pp. 665-675
-
-
Eastmond, P.J.1
-
69
-
-
84971595231
-
Oil is on the agenda: lipid turnover in higher plants
-
Kelly, A.A., Feussner, I., Oil is on the agenda: lipid turnover in higher plants. Biochim. Biophys. Acta 1861 (2016), 1253–1268.
-
(2016)
Biochim. Biophys. Acta
, vol.1861
, pp. 1253-1268
-
-
Kelly, A.A.1
Feussner, I.2
-
70
-
-
84987784907
-
Sucrose production mediated by lipid metabolism suppresses the physical interaction of peroxisomes and oil bodies during germination of Arabidopsis thaliana
-
Cui, S., et al. Sucrose production mediated by lipid metabolism suppresses the physical interaction of peroxisomes and oil bodies during germination of Arabidopsis thaliana. J. Biol. Chem. 291 (2016), 19734–19745.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 19734-19745
-
-
Cui, S.1
-
71
-
-
84961289444
-
Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies
-
Thazar-Poulot, N., Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc. Natl Acad. Sci. U. S. A. 112 (2015), 4158–4163.
-
(2015)
Proc. Natl Acad. Sci. U. S. A.
, vol.112
, pp. 4158-4163
-
-
Thazar-Poulot, N.1
-
72
-
-
20444476835
-
Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants: Implications for transport of jasmonate precursors into peroxisomes
-
Theodoulou, F.L., et al. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants: Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 137 (2005), 835–840.
-
(2005)
Plant Physiol.
, vol.137
, pp. 835-840
-
-
Theodoulou, F.L.1
-
73
-
-
79953074465
-
12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis
-
Dave, A., et al. 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23 (2011), 583–599.
-
(2011)
Plant Cell
, vol.23
, pp. 583-599
-
-
Dave, A.1
-
74
-
-
84899142025
-
CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism
-
Park, S., et al. CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. Plant Signal. Behav., 9, 2014, e27723.
-
(2014)
Plant Signal. Behav.
, vol.9
, pp. e27723
-
-
Park, S.1
-
75
-
-
84970004139
-
Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM
-
Miao, H., et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat. Commun., 7, 2016, 11716.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11716
-
-
Miao, H.1
-
76
-
-
0031021876
-
Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast
-
Ting, J.T., et al. Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast. J. Biol. Chem. 272 (1997), 3699–3706.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 3699-3706
-
-
Ting, J.T.1
-
77
-
-
0033880434
-
In vivo targeting of a sunflower oil body protein in yeast secretory (sec) mutants
-
Beaudoin, F., et al. In vivo targeting of a sunflower oil body protein in yeast secretory (sec) mutants. Plant J. 23 (2000), 159–170.
-
(2000)
Plant J.
, vol.23
, pp. 159-170
-
-
Beaudoin, F.1
-
78
-
-
84888101258
-
Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum
-
Jacquier, N., et al. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126 (2013), 5198–5209.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 5198-5209
-
-
Jacquier, N.1
-
79
-
-
84958537470
-
Expression of perilipin 5 promotes lipid droplet formation in yeast
-
Mishra, S., Schneiter, R., Expression of perilipin 5 promotes lipid droplet formation in yeast. Commun. Integr. Biol., 8, 2015, e1071728.
-
(2015)
Commun. Integr. Biol.
, vol.8
, pp. e1071728
-
-
Mishra, S.1
Schneiter, R.2
-
80
-
-
84964873073
-
Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3
-
Rowe, E.R., et al. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3. J. Biol. Chem. 291 (2016), 6664–6678.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 6664-6678
-
-
Rowe, E.R.1
-
81
-
-
85013175519
-
Tobacco pollen tubes − a fast and easy tool to study lipid droplet association of plant proteins
-
Müller, A.O., et al. Tobacco pollen tubes − a fast and easy tool to study lipid droplet association of plant proteins. Plant J. 89 (2016), 1055–1064.
-
(2016)
Plant J.
, vol.89
, pp. 1055-1064
-
-
Müller, A.O.1
-
82
-
-
38349127584
-
Evolutionarily conserved gene family important for fat storage
-
Kadereit, B., et al. Evolutionarily conserved gene family important for fat storage. Proc. Natl Acad. Sci. U. S. A. 105 (2008), 94–99.
-
(2008)
Proc. Natl Acad. Sci. U. S. A.
, vol.105
, pp. 94-99
-
-
Kadereit, B.1
-
83
-
-
83755183360
-
Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation
-
Gross, D.A., et al. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc. Natl Acad. Sci. U. S. A. 108 (2011), 19581–19586.
-
(2011)
Proc. Natl Acad. Sci. U. S. A.
, vol.108
, pp. 19581-19586
-
-
Gross, D.A.1
-
84
-
-
84971299729
-
A conserved family of proteins facilitates nascent lipid droplet budding from the ER
-
Choudhary, V., et al. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211 (2015), 261–271.
-
(2015)
J. Cell Biol.
, vol.211
, pp. 261-271
-
-
Choudhary, V.1
-
85
-
-
85020402894
-
Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants
-
Published online December 17
-
Cai, Y., et al. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. Plant Biotechnol. J., 2016, 10.1111/pbi.12678 Published online December 17, 2016.
-
(2016)
Plant Biotechnol. J.
-
-
Cai, Y.1
-
86
-
-
84875871194
-
Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes
-
Sun, Z., et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun., 4, 2013, 1594.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1594
-
-
Sun, Z.1
-
87
-
-
84899428316
-
Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes
-
Grahn, T.H.M., et al. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J. Biol. Chem. 289 (2014), 12029–12039.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 12029-12039
-
-
Grahn, T.H.M.1
-
88
-
-
77954003389
-
Seed-based expression systems for plant molecular farming
-
Boothe, J., et al. Seed-based expression systems for plant molecular farming. Plant Biotechnol. J. 8 (2010), 588–606.
-
(2010)
Plant Biotechnol. J.
, vol.8
, pp. 588-606
-
-
Boothe, J.1
-
89
-
-
84988429289
-
The plant lipidome in human and environmental health
-
Horn, P.J., Benning, C., The plant lipidome in human and environmental health. Science 353 (2016), 1228–1232.
-
(2016)
Science
, vol.353
, pp. 1228-1232
-
-
Horn, P.J.1
Benning, C.2
-
90
-
-
84894273189
-
Energy densification in vegetative biomass through metabolic engineering
-
Vanhercke, T., et al. Energy densification in vegetative biomass through metabolic engineering. Biocatal. Agric. Biotechnol. 3 (2014), 75–80.
-
(2014)
Biocatal. Agric. Biotechnol.
, vol.3
, pp. 75-80
-
-
Vanhercke, T.1
-
91
-
-
84967566826
-
Engineering oil accumulation in vegetative tissue
-
T.A. McKeon Academic Press and AOCS Press
-
Weselake, R.J., et al. Engineering oil accumulation in vegetative tissue. McKeon, T.A., (eds.) Industrial Oil Crops, 2016, Academic Press and AOCS Press, 413–434.
-
(2016)
Industrial Oil Crops
, pp. 413-434
-
-
Weselake, R.J.1
-
92
-
-
84968756840
-
Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues
-
Xu, C., Shanklin, J., Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu. Rev. Plant Biol. 67 (2016), 179–206.
-
(2016)
Annu. Rev. Plant Biol.
, vol.67
, pp. 179-206
-
-
Xu, C.1
Shanklin, J.2
-
93
-
-
84892863403
-
Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves
-
Vanhercke, T., et al. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 12 (2014), 231–239.
-
(2014)
Plant Biotechnol. J.
, vol.12
, pp. 231-239
-
-
Vanhercke, T.1
-
94
-
-
85010002492
-
Step changes in leaf oil accumulation via iterative metabolic engineering
-
Vanhercke, T., et al. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab. Eng. 39 (2016), 237–246.
-
(2016)
Metab. Eng.
, vol.39
, pp. 237-246
-
-
Vanhercke, T.1
-
95
-
-
85028274136
-
Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism
-
Hofvander, P., et al. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotechnol. J. 14 (2016), 1883–1898.
-
(2016)
Plant Biotechnol. J.
, vol.14
, pp. 1883-1898
-
-
Hofvander, P.1
-
96
-
-
84978886104
-
Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy
-
Liu, Q., et al. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. Plant Biotechnol. J. 15 (2016), 56–67.
-
(2016)
Plant Biotechnol. J.
, vol.15
, pp. 56-67
-
-
Liu, Q.1
-
97
-
-
84878436289
-
In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density
-
Winichayakul, S., et al. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol. 162 (2013), 626–639.
-
(2013)
Plant Physiol.
, vol.162
, pp. 626-639
-
-
Winichayakul, S.1
-
98
-
-
85016597027
-
Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves
-
Published online January 13
-
Yurchenko, O., et al. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. Plant Biotechnol. J., 2017, 10.1111/pbi.12695 Published online January 13, 2017.
-
(2017)
Plant Biotechnol. J.
-
-
Yurchenko, O.1
-
99
-
-
84928008023
-
Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids
-
Reynolds, K.B., et al. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front. Plant Sci., 6, 2015, 164.
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 164
-
-
Reynolds, K.B.1
-
100
-
-
84959449436
-
Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production
-
Zhu, L.H., et al. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci. Rep., 6, 2016, 22181.
-
(2016)
Sci. Rep.
, vol.6
, pp. 22181
-
-
Zhu, L.H.1
-
101
-
-
84895735915
-
Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites
-
Pol, A., et al. Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J. Cell Biol. 204 (2014), 635–646.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 635-646
-
-
Pol, A.1
-
102
-
-
84898645712
-
Lipid droplet biogenesis
-
Wilfling, F., et al. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29 (2014), 39–45.
-
(2014)
Curr. Opin. Cell Biol.
, vol.29
, pp. 39-45
-
-
Wilfling, F.1
-
103
-
-
84961189674
-
Targeting fat: mechanisms of protein localization to lipid droplets
-
Kory, N., et al. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol. 26 (2016), 535–546.
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 535-546
-
-
Kory, N.1
-
104
-
-
84978680317
-
The lipid droplet − a well-connected organelle
-
Gao, Q., Goodman, J.M., The lipid droplet − a well-connected organelle. Front. Cell Dev. Biol., 3, 2015, 49.
-
(2015)
Front. Cell Dev. Biol.
, vol.3
, pp. 49
-
-
Gao, Q.1
Goodman, J.M.2
-
105
-
-
84969677578
-
The physics of lipid droplet nucleation, growth and budding
-
Thiam, A.R., Forêt, L., The physics of lipid droplet nucleation, growth and budding. Biochim. Biophys. Acta 1861 (2016), 715–722.
-
(2016)
Biochim. Biophys. Acta
, vol.1861
, pp. 715-722
-
-
Thiam, A.R.1
Forêt, L.2
-
106
-
-
85013254075
-
Lipid droplet growth: regulation of a dynamic organelle
-
Barneda, D., Christian, M., Lipid droplet growth: regulation of a dynamic organelle. Curr. Opin. Cell Biol. 47 (2017), 9–15.
-
(2017)
Curr. Opin. Cell Biol.
, vol.47
, pp. 9-15
-
-
Barneda, D.1
Christian, M.2
-
107
-
-
78650281500
-
Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination
-
Hsiao, E.S., Tzen, J.T., Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination. Plant Physiol. Biochem. 49 (2011), 77–81.
-
(2011)
Plant Physiol. Biochem.
, vol.49
, pp. 77-81
-
-
Hsiao, E.S.1
Tzen, J.T.2
-
108
-
-
84940932767
-
Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during postgerminative seedling growth in Arabidopsis
-
Deruyffelaere, C., et al. Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during postgerminative seedling growth in Arabidopsis. Plant Cell Physiol. 56 (2015), 1374–1387.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 1374-1387
-
-
Deruyffelaere, C.1
-
109
-
-
24044440820
-
LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves
-
Santos Mendoza, M., et al. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 579 (2005), 4666–4670.
-
(2005)
FEBS Lett.
, vol.579
, pp. 4666-4670
-
-
Santos Mendoza, M.1
-
110
-
-
77950991763
-
Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass
-
Andrianov, V., et al. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 8 (2010), 277–287.
-
(2010)
Plant Biotechnol. J.
, vol.8
, pp. 277-287
-
-
Andrianov, V.1
-
111
-
-
70349637134
-
At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase
-
Ghosh, A.K., et al. At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 151 (2009), 869–881.
-
(2009)
Plant Physiol.
, vol.151
, pp. 869-881
-
-
Ghosh, A.K.1
|