메뉴 건너뛰기




Volumn 22, Issue 7, 2017, Pages 596-609

Turning Over a New Leaf in Lipid Droplet Biology

Author keywords

biofuels and bioproducts; biogenesis; lipid droplets; lipid metabolic engineering; neutral lipids

Indexed keywords

FAT DROPLET;

EID: 85018873249     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2017.03.012     Document Type: Review
Times cited : (125)

References (111)
  • 1
    • 84855708946 scopus 로고    scopus 로고
    • Biogenesis and functions of lipid droplets in plants thematic review series: lipid droplet synthesis and metabolism: from yeast to man
    • Chapman, K.D., et al. Biogenesis and functions of lipid droplets in plants thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J. Lipid Res. 53 (2012), 215–226.
    • (2012) J. Lipid Res. , vol.53 , pp. 215-226
    • Chapman, K.D.1
  • 2
    • 84862668222 scopus 로고    scopus 로고
    • The dynamic roles of intracellular lipid droplets: from archaea to mammals
    • Murphy, D.J., The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249 (2012), 541–585.
    • (2012) Protoplasma , vol.249 , pp. 541-585
    • Murphy, D.J.1
  • 3
    • 84904647870 scopus 로고    scopus 로고
    • Cytosolic lipid droplets: from mechanisms of fat storage to disease
    • Gross, D.A., Silver, D.L., Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Biol. 49 (2014), 304–326.
    • (2014) Crit. Rev. Biochem. Biol. , vol.49 , pp. 304-326
    • Gross, D.A.1    Silver, D.L.2
  • 4
    • 84939983589 scopus 로고    scopus 로고
    • Microalgal lipid droplets: composition, diversity, biogenesis and functions
    • Goold, H., et al. Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep. 34 (2015), 545–555.
    • (2015) Plant Cell Rep. , vol.34 , pp. 545-555
    • Goold, H.1
  • 6
    • 84933277490 scopus 로고    scopus 로고
    • Lipid droplet dynamics in budding yeast
    • Wang, C.W., Lipid droplet dynamics in budding yeast. Cell. Mol. Life Sci. 72 (2015), 2677–2695.
    • (2015) Cell. Mol. Life Sci. , vol.72 , pp. 2677-2695
    • Wang, C.W.1
  • 7
    • 85010874857 scopus 로고    scopus 로고
    • The why, when and how of lipid droplet diversity
    • Thiam, A.R., Beller, M., The why, when and how of lipid droplet diversity. J. Cell Sci. 130 (2017), 315–324.
    • (2017) J. Cell Sci. , vol.130 , pp. 315-324
    • Thiam, A.R.1    Beller, M.2
  • 8
    • 84888367601 scopus 로고    scopus 로고
    • The biophysics and cell biology of lipid droplets
    • Thiam, A.R., et al. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14 (2013), 775–786.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 775-786
    • Thiam, A.R.1
  • 9
    • 84892678440 scopus 로고    scopus 로고
    • Open questions in lipid droplet biology
    • Ohsaki, Y., et al. Open questions in lipid droplet biology. Chem. Biol. 21 (2014), 86–96.
    • (2014) Chem. Biol. , vol.21 , pp. 86-96
    • Ohsaki, Y.1
  • 10
    • 84935005440 scopus 로고    scopus 로고
    • The role of plastoglobules in thylakoid lipid remodeling during plant development
    • Rottet, S., et al. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim. Biophys. Acta 1847 (2015), 889–899.
    • (2015) Biochim. Biophys. Acta , vol.1847 , pp. 889-899
    • Rottet, S.1
  • 11
    • 84874970047 scopus 로고    scopus 로고
    • Lipid metabolism in microalgae distinguishes itself
    • Liu, B., Benning, C., Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotechnol. 24 (2013), 300–309.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 300-309
    • Liu, B.1    Benning, C.2
  • 12
    • 84975706443 scopus 로고    scopus 로고
    • Stress-induced neutral lipid biosynthesis in microalgae − molecular, cellular and physiological insights
    • Zienkiewicz, K., et al. Stress-induced neutral lipid biosynthesis in microalgae − molecular, cellular and physiological insights. Biochim. Biophys. Acta 1861 (2016), 1269–1281.
    • (2016) Biochim. Biophys. Acta , vol.1861 , pp. 1269-1281
    • Zienkiewicz, K.1
  • 13
    • 84965166295 scopus 로고    scopus 로고
    • Liquid–liquid phase separation of oil bodies from seeds
    • Nykiforuk, C.L., Liquid–liquid phase separation of oil bodies from seeds. Methods Mol. Biol. 1385 (2016), 173–188.
    • (2016) Methods Mol. Biol. , vol.1385 , pp. 173-188
    • Nykiforuk, C.L.1
  • 14
    • 0030113124 scopus 로고    scopus 로고
    • Oleosins and oil bodies in seeds and other organs
    • Huang, A.H., Oleosins and oil bodies in seeds and other organs. Plant Physiol., 110, 1996, 1055.
    • (1996) Plant Physiol. , vol.110 , pp. 1055
    • Huang, A.H.1
  • 15
    • 84940007641 scopus 로고    scopus 로고
    • The characteristics and potential applications of structural lipid droplet proteins in plants
    • Laibach, N., et al. The characteristics and potential applications of structural lipid droplet proteins in plants. J. Biotechnol. 201 (2015), 15–27.
    • (2015) J. Biotechnol. , vol.201 , pp. 15-27
    • Laibach, N.1
  • 16
    • 33747489319 scopus 로고    scopus 로고
    • The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis
    • Siloto, R.M., et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18 (2006), 1961–1974.
    • (2006) Plant Cell , vol.18 , pp. 1961-1974
    • Siloto, R.M.1
  • 17
    • 72449165108 scopus 로고    scopus 로고
    • Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes
    • Schmidt, M.A., Herman, E.M., Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol. Plant. 1 (2008), 910–924.
    • (2008) Mol. Plant. , vol.1 , pp. 910-924
    • Schmidt, M.A.1    Herman, E.M.2
  • 18
    • 49849106327 scopus 로고    scopus 로고
    • A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana
    • Shimada, T.L., et al. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J. 55 (2008), 798–809.
    • (2008) Plant J. , vol.55 , pp. 798-809
    • Shimada, T.L.1
  • 19
    • 77649191491 scopus 로고    scopus 로고
    • Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms
    • Wu, Y.Y., et al. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol. Biochem. 48 (2010), 81–89.
    • (2010) Plant Physiol. Biochem. , vol.48 , pp. 81-89
    • Wu, Y.Y.1
  • 20
    • 84898730657 scopus 로고    scopus 로고
    • Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds
    • Miquel, M., et al. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol. 164 (2014), 1866–1878.
    • (2014) Plant Physiol. , vol.164 , pp. 1866-1878
    • Miquel, M.1
  • 21
    • 64749114293 scopus 로고    scopus 로고
    • Storage oil hydrolysis during early seedling growth
    • Quettier, A.L., Eastmond, P.J., Storage oil hydrolysis during early seedling growth. Plant Physiol. Biochem. 47 (2009), 485–490.
    • (2009) Plant Physiol. Biochem. , vol.47 , pp. 485-490
    • Quettier, A.L.1    Eastmond, P.J.2
  • 22
    • 84875725099 scopus 로고    scopus 로고
    • Oleosin of subcellular lipid droplets evolved in green algae
    • Huang, N.L., et al. Oleosin of subcellular lipid droplets evolved in green algae. Plant Physiol. 161 (2013), 1862–1874.
    • (2013) Plant Physiol. , vol.161 , pp. 1862-1874
    • Huang, N.L.1
  • 23
    • 84940904951 scopus 로고    scopus 로고
    • Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants
    • Huang, M.D., Huang, A.H., Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants. Plant Physiol. 169 (2015), 453–470.
    • (2015) Plant Physiol. , vol.169 , pp. 453-470
    • Huang, M.D.1    Huang, A.H.2
  • 24
    • 84890560014 scopus 로고    scopus 로고
    • Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection
    • Sztalryd, C., Kimmel, A.R., Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 96 (2014), 96–101.
    • (2014) Biochimie , vol.96 , pp. 96-101
    • Sztalryd, C.1    Kimmel, A.R.2
  • 25
    • 84880986167 scopus 로고    scopus 로고
    • Identification of a new class of lipid droplet-associated proteins in plants
    • Horn, P.J., et al. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol. 162 (2013), 1926–1936.
    • (2013) Plant Physiol. , vol.162 , pp. 1926-1936
    • Horn, P.J.1
  • 26
    • 84975230370 scopus 로고    scopus 로고
    • Highlights on Hevea brasiliensis (pro)hevein proteins
    • Berthelot, K., et al. Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 127 (2016), 258–270.
    • (2016) Biochimie , vol.127 , pp. 258-270
    • Berthelot, K.1
  • 27
    • 84890896146 scopus 로고    scopus 로고
    • Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells
    • Gidda, S.K., et al. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. Plant Signal. Behav., 8, 2013, e27141.
    • (2013) Plant Signal. Behav. , vol.8 , pp. e27141
    • Gidda, S.K.1
  • 28
    • 84962119094 scopus 로고    scopus 로고
    • Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells
    • Gidda, S.K., et al. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol. 170 (2016), 2052–2071.
    • (2016) Plant Physiol. , vol.170 , pp. 2052-2071
    • Gidda, S.K.1
  • 29
    • 84876339644 scopus 로고    scopus 로고
    • Commentary: why don't plant leaves get fat?
    • Chapman, K.D., et al. Commentary: why don't plant leaves get fat?. Plant Sci. 207 (2013), 128–134.
    • (2013) Plant Sci. , vol.207 , pp. 128-134
    • Chapman, K.D.1
  • 30
    • 84960432012 scopus 로고    scopus 로고
    • The breakdown of stored triacylglycerols is required during light-induced stomatal opening
    • McLachlan, D.H., et al. The breakdown of stored triacylglycerols is required during light-induced stomatal opening. Curr. Biol. 26 (2016), 707–712.
    • (2016) Curr. Biol. , vol.26 , pp. 707-712
    • McLachlan, D.H.1
  • 31
    • 80053923102 scopus 로고    scopus 로고
    • Cloning and characterization of the new multiple stress responsible gene I (MuSI) from sweet potato
    • Seo, S.G., et al. Cloning and characterization of the new multiple stress responsible gene I (MuSI) from sweet potato. Genes Genomics 32 (2010), 544–552.
    • (2010) Genes Genomics , vol.32 , pp. 544-552
    • Seo, S.G.1
  • 32
    • 84962090739 scopus 로고    scopus 로고
    • Arabidopsis small rubber particle protein homolog SRPs play dual roles as positive factors for tissue growth and development and in drought stress responses
    • Kim, E.Y., et al. Arabidopsis small rubber particle protein homolog SRPs play dual roles as positive factors for tissue growth and development and in drought stress responses. Plant Physiol. 170 (2016), 2494–2510.
    • (2016) Plant Physiol. , vol.170 , pp. 2494-2510
    • Kim, E.Y.1
  • 33
    • 77952549609 scopus 로고    scopus 로고
    • Constitutive expression of CaSRP1, a hot pepper small rubber particle protein homolog, resulted in fast growth and improved drought tolerance in transgenic Arabidopsis plants
    • Kim, E.Y., et al. Constitutive expression of CaSRP1, a hot pepper small rubber particle protein homolog, resulted in fast growth and improved drought tolerance in transgenic Arabidopsis plants. Planta 232 (2010), 71–83.
    • (2010) Planta , vol.232 , pp. 71-83
    • Kim, E.Y.1
  • 34
    • 84880083087 scopus 로고    scopus 로고
    • Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome
    • Jolivet, P., et al. Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome. Proteomics 13 (2013), 1836–1849.
    • (2013) Proteomics , vol.13 , pp. 1836-1849
    • Jolivet, P.1
  • 35
    • 84919341476 scopus 로고    scopus 로고
    • Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content
    • Liu, H., et al. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J. Proteomics. 113 (2015), 403–414.
    • (2015) J. Proteomics. , vol.113 , pp. 403-414
    • Liu, H.1
  • 36
    • 84969706272 scopus 로고    scopus 로고
    • OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice
    • Zhang, Z., et al. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. Plant Sci. 249 (2016), 35–45.
    • (2016) Plant Sci. , vol.249 , pp. 35-45
    • Zhang, Z.1
  • 37
    • 84891773456 scopus 로고    scopus 로고
    • Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis
    • Shimada, T.L., et al. Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol. 164 (2014), 105–118.
    • (2014) Plant Physiol. , vol.164 , pp. 105-118
    • Shimada, T.L.1
  • 38
    • 84934988391 scopus 로고    scopus 로고
    • Leaf oil bodies are subcellular factories producing antifungal oxylipins
    • Shimada, T.L., Hara-Nishimura, I., Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr. Opin. Plant Biol. 25 (2015), 145–150.
    • (2015) Curr. Opin. Plant Biol. , vol.25 , pp. 145-150
    • Shimada, T.L.1    Hara-Nishimura, I.2
  • 39
    • 78651269018 scopus 로고    scopus 로고
    • RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana
    • Aubert, Y., et al. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol. 51 (2010), 1975–1987.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1975-1987
    • Aubert, Y.1
  • 40
    • 79956125692 scopus 로고    scopus 로고
    • A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis
    • Kim, Y.Y., et al. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Plant Cell Physiol. 52 (2011), 874–884.
    • (2011) Plant Cell Physiol. , vol.52 , pp. 874-884
    • Kim, Y.Y.1
  • 41
    • 84897597120 scopus 로고    scopus 로고
    • The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size
    • López-Ribera, I., et al. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. Plant Physiol. 164 (2014), 1237–1249.
    • (2014) Plant Physiol. , vol.164 , pp. 1237-1249
    • López-Ribera, I.1
  • 42
    • 85014301785 scopus 로고    scopus 로고
    • Oil biosynthesis in underground oil-rich storage vegetative tissue: comparison of Cyperus esculentus tuber with oil seeds and fruits
    • Yang, Z., et al. Oil biosynthesis in underground oil-rich storage vegetative tissue: comparison of Cyperus esculentus tuber with oil seeds and fruits. Plant Cell Physiol. 57 (2016), 2519–2540.
    • (2016) Plant Cell Physiol. , vol.57 , pp. 2519-2540
    • Yang, Z.1
  • 43
    • 84920175917 scopus 로고    scopus 로고
    • Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil
    • Davidi, L., et al. Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol. 167 (2015), 60–79.
    • (2015) Plant Physiol. , vol.167 , pp. 60-79
    • Davidi, L.1
  • 44
    • 84879872506 scopus 로고    scopus 로고
    • The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage
    • Thiel, K., et al. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J. Cell Sci. 126 (2013), 2198–2212.
    • (2013) J. Cell Sci. , vol.126 , pp. 2198-2212
    • Thiel, K.1
  • 45
    • 0034941121 scopus 로고    scopus 로고
    • Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13
    • Magré, J., et al. Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28 (2001), 365–370.
    • (2001) Nat. Genet. , vol.28 , pp. 365-370
    • Magré, J.1
  • 46
    • 38049184643 scopus 로고    scopus 로고
    • The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology
    • Szymanski, K.M., et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. U. S. A. 104 (2007), 20890–20895.
    • (2007) Proc. Natl Acad. Sci. U. S. A. , vol.104 , pp. 20890-20895
    • Szymanski, K.M.1
  • 47
    • 39049151385 scopus 로고    scopus 로고
    • Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast
    • Fei, W., et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180 (2008), 473–482.
    • (2008) J. Cell Biol. , vol.180 , pp. 473-482
    • Fei, W.1
  • 48
    • 84988807217 scopus 로고    scopus 로고
    • Seipin is required for converting nascent to mature lipid droplets
    • Wang, H., et al. Seipin is required for converting nascent to mature lipid droplets. Elife, 5, 2016, e16582.
    • (2016) Elife , vol.5 , pp. e16582
    • Wang, H.1
  • 49
    • 84943740201 scopus 로고    scopus 로고
    • Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation
    • Cai, Y., et al. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell 27 (2015), 2616–2636.
    • (2015) Plant Cell , vol.27 , pp. 2616-2636
    • Cai, Y.1
  • 50
    • 84970973731 scopus 로고    scopus 로고
    • The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites
    • Grippa, A., et al. The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites. J. Cell Biol. 211 (2015), 829–844.
    • (2015) J. Cell Biol. , vol.211 , pp. 829-844
    • Grippa, A.1
  • 51
    • 84949209639 scopus 로고    scopus 로고
    • Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p ΔNterm only in combination with Ldb16p
    • Han, S., et al. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p ΔNterm only in combination with Ldb16p. BMC Cell Biol., 16, 2015, 29.
    • (2015) BMC Cell Biol. , vol.16 , pp. 29
    • Han, S.1
  • 52
    • 85006060196 scopus 로고    scopus 로고
    • Seipin regulates ER–lipid droplet contacts and cargo delivery
    • Salo, V.T., et al. Seipin regulates ER–lipid droplet contacts and cargo delivery. EMBO J. 35 (2016), 2699–2716.
    • (2016) EMBO J. , vol.35 , pp. 2699-2716
    • Salo, V.T.1
  • 53
    • 78650388357 scopus 로고    scopus 로고
    • Seipin is a discrete homooligomer
    • Binns, D., et al. Seipin is a discrete homooligomer. Biochemistry 49 (2010), 10747–10755.
    • (2010) Biochemistry , vol.49 , pp. 10747-10755
    • Binns, D.1
  • 54
    • 84922780683 scopus 로고    scopus 로고
    • Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology
    • Cartwright, B.R., et al. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26 (2015), 726–739.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 726-739
    • Cartwright, B.R.1
  • 55
    • 78049248112 scopus 로고    scopus 로고
    • Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants
    • James, C.N., et al. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proc. Natl Acad. Sci. U. S. A. 107 (2010), 17833–17838.
    • (2010) Proc. Natl Acad. Sci. U. S. A. , vol.107 , pp. 17833-17838
    • James, C.N.1
  • 56
    • 0016096382 scopus 로고
    • Ichthyosiform dermatosis with systemic lipidosis
    • Dorfman, M.L., et al. Ichthyosiform dermatosis with systemic lipidosis. Arch. Dermatol. 110 (1974), 261–266.
    • (1974) Arch. Dermatol. , vol.110 , pp. 261-266
    • Dorfman, M.L.1
  • 57
    • 0034764272 scopus 로고    scopus 로고
    • Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin–Dorfman syndrome
    • Lefèvre, C., et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin–Dorfman syndrome. Am. J. Hum. Genet. 69 (2001), 1002–1012.
    • (2001) Am. J. Hum. Genet. , vol.69 , pp. 1002-1012
    • Lefèvre, C.1
  • 58
    • 67349265779 scopus 로고    scopus 로고
    • Chanarin–Dorfman syndrome: deficiency in CGI -58, a lipid droplet-bound coactivator of lipase
    • Yamaguchi, T., Osumi, T., Chanarin–Dorfman syndrome: deficiency in CGI -58, a lipid droplet-bound coactivator of lipase. Biochim. Biophys. Acta 1791 (2009), 519–523.
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 519-523
    • Yamaguchi, T.1    Osumi, T.2
  • 59
    • 84951573077 scopus 로고    scopus 로고
    • Lipid droplet mobilization: the different ways to loosen the purse strings
    • D'Andrea, S., Lipid droplet mobilization: the different ways to loosen the purse strings. Biochimie 120 (2016), 17–27.
    • (2016) Biochimie , vol.120 , pp. 17-27
    • D'Andrea, S.1
  • 60
    • 4744341229 scopus 로고    scopus 로고
    • Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes
    • Subramanian, V., et al. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J. Biol. Chem. 279 (2004), 42062–42071.
    • (2004) J. Biol. Chem. , vol.279 , pp. 42062-42071
    • Subramanian, V.1
  • 61
    • 3142738035 scopus 로고    scopus 로고
    • CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome
    • Yamaguchi, T., et al. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome. J. Biol. Chem. 279 (2004), 30490–30497.
    • (2004) J. Biol. Chem. , vol.279 , pp. 30490-30497
    • Yamaguchi, T.1
  • 62
    • 84879483748 scopus 로고    scopus 로고
    • The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis
    • Park, S., et al. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell 25 (2013), 1726–1739.
    • (2013) Plant Cell , vol.25 , pp. 1726-1739
    • Park, S.1
  • 63
    • 0035201037 scopus 로고    scopus 로고
    • The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation
    • Zolman, B.K., et al. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol. 127 (2001), 1266–1278.
    • (2001) Plant Physiol. , vol.127 , pp. 1266-1278
    • Zolman, B.K.1
  • 64
    • 0037124376 scopus 로고    scopus 로고
    • Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP
    • Footitt, S., et al. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21 (2002), 2912–2922.
    • (2002) EMBO J. , vol.21 , pp. 2912-2922
    • Footitt, S.1
  • 65
    • 0036008342 scopus 로고    scopus 로고
    • Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation
    • Hayashi, M., et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation. Plant Cell Physiol. 43 (2002), 1–11.
    • (2002) Plant Cell Physiol. , vol.43 , pp. 1-11
    • Hayashi, M.1
  • 66
    • 70849102767 scopus 로고    scopus 로고
    • The ABC transporter PXA1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness
    • Kunz, H.H., et al. The ABC transporter PXA1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21 (2009), 2733–2749.
    • (2009) Plant Cell , vol.21 , pp. 2733-2749
    • Kunz, H.H.1
  • 67
    • 68849105129 scopus 로고    scopus 로고
    • Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways
    • Slocombe, S.P., et al. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol. J. 7 (2009), 694–703.
    • (2009) Plant Biotechnol. J. , vol.7 , pp. 694-703
    • Slocombe, S.P.1
  • 68
    • 33646842826 scopus 로고    scopus 로고
    • SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds
    • Eastmond, P.J., SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18 (2006), 665–675.
    • (2006) Plant Cell , vol.18 , pp. 665-675
    • Eastmond, P.J.1
  • 69
    • 84971595231 scopus 로고    scopus 로고
    • Oil is on the agenda: lipid turnover in higher plants
    • Kelly, A.A., Feussner, I., Oil is on the agenda: lipid turnover in higher plants. Biochim. Biophys. Acta 1861 (2016), 1253–1268.
    • (2016) Biochim. Biophys. Acta , vol.1861 , pp. 1253-1268
    • Kelly, A.A.1    Feussner, I.2
  • 70
    • 84987784907 scopus 로고    scopus 로고
    • Sucrose production mediated by lipid metabolism suppresses the physical interaction of peroxisomes and oil bodies during germination of Arabidopsis thaliana
    • Cui, S., et al. Sucrose production mediated by lipid metabolism suppresses the physical interaction of peroxisomes and oil bodies during germination of Arabidopsis thaliana. J. Biol. Chem. 291 (2016), 19734–19745.
    • (2016) J. Biol. Chem. , vol.291 , pp. 19734-19745
    • Cui, S.1
  • 71
    • 84961289444 scopus 로고    scopus 로고
    • Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies
    • Thazar-Poulot, N., Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc. Natl Acad. Sci. U. S. A. 112 (2015), 4158–4163.
    • (2015) Proc. Natl Acad. Sci. U. S. A. , vol.112 , pp. 4158-4163
    • Thazar-Poulot, N.1
  • 72
    • 20444476835 scopus 로고    scopus 로고
    • Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants: Implications for transport of jasmonate precursors into peroxisomes
    • Theodoulou, F.L., et al. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants: Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 137 (2005), 835–840.
    • (2005) Plant Physiol. , vol.137 , pp. 835-840
    • Theodoulou, F.L.1
  • 73
    • 79953074465 scopus 로고    scopus 로고
    • 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis
    • Dave, A., et al. 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23 (2011), 583–599.
    • (2011) Plant Cell , vol.23 , pp. 583-599
    • Dave, A.1
  • 74
    • 84899142025 scopus 로고    scopus 로고
    • CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism
    • Park, S., et al. CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. Plant Signal. Behav., 9, 2014, e27723.
    • (2014) Plant Signal. Behav. , vol.9 , pp. e27723
    • Park, S.1
  • 75
    • 84970004139 scopus 로고    scopus 로고
    • Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM
    • Miao, H., et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat. Commun., 7, 2016, 11716.
    • (2016) Nat. Commun. , vol.7 , pp. 11716
    • Miao, H.1
  • 76
    • 0031021876 scopus 로고    scopus 로고
    • Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast
    • Ting, J.T., et al. Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast. J. Biol. Chem. 272 (1997), 3699–3706.
    • (1997) J. Biol. Chem. , vol.272 , pp. 3699-3706
    • Ting, J.T.1
  • 77
    • 0033880434 scopus 로고    scopus 로고
    • In vivo targeting of a sunflower oil body protein in yeast secretory (sec) mutants
    • Beaudoin, F., et al. In vivo targeting of a sunflower oil body protein in yeast secretory (sec) mutants. Plant J. 23 (2000), 159–170.
    • (2000) Plant J. , vol.23 , pp. 159-170
    • Beaudoin, F.1
  • 78
    • 84888101258 scopus 로고    scopus 로고
    • Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum
    • Jacquier, N., et al. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126 (2013), 5198–5209.
    • (2013) J. Cell Sci. , vol.126 , pp. 5198-5209
    • Jacquier, N.1
  • 79
    • 84958537470 scopus 로고    scopus 로고
    • Expression of perilipin 5 promotes lipid droplet formation in yeast
    • Mishra, S., Schneiter, R., Expression of perilipin 5 promotes lipid droplet formation in yeast. Commun. Integr. Biol., 8, 2015, e1071728.
    • (2015) Commun. Integr. Biol. , vol.8 , pp. e1071728
    • Mishra, S.1    Schneiter, R.2
  • 80
    • 84964873073 scopus 로고    scopus 로고
    • Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3
    • Rowe, E.R., et al. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3. J. Biol. Chem. 291 (2016), 6664–6678.
    • (2016) J. Biol. Chem. , vol.291 , pp. 6664-6678
    • Rowe, E.R.1
  • 81
    • 85013175519 scopus 로고    scopus 로고
    • Tobacco pollen tubes − a fast and easy tool to study lipid droplet association of plant proteins
    • Müller, A.O., et al. Tobacco pollen tubes − a fast and easy tool to study lipid droplet association of plant proteins. Plant J. 89 (2016), 1055–1064.
    • (2016) Plant J. , vol.89 , pp. 1055-1064
    • Müller, A.O.1
  • 82
    • 38349127584 scopus 로고    scopus 로고
    • Evolutionarily conserved gene family important for fat storage
    • Kadereit, B., et al. Evolutionarily conserved gene family important for fat storage. Proc. Natl Acad. Sci. U. S. A. 105 (2008), 94–99.
    • (2008) Proc. Natl Acad. Sci. U. S. A. , vol.105 , pp. 94-99
    • Kadereit, B.1
  • 83
    • 83755183360 scopus 로고    scopus 로고
    • Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation
    • Gross, D.A., et al. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc. Natl Acad. Sci. U. S. A. 108 (2011), 19581–19586.
    • (2011) Proc. Natl Acad. Sci. U. S. A. , vol.108 , pp. 19581-19586
    • Gross, D.A.1
  • 84
    • 84971299729 scopus 로고    scopus 로고
    • A conserved family of proteins facilitates nascent lipid droplet budding from the ER
    • Choudhary, V., et al. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211 (2015), 261–271.
    • (2015) J. Cell Biol. , vol.211 , pp. 261-271
    • Choudhary, V.1
  • 85
    • 85020402894 scopus 로고    scopus 로고
    • Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants
    • Published online December 17
    • Cai, Y., et al. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. Plant Biotechnol. J., 2016, 10.1111/pbi.12678 Published online December 17, 2016.
    • (2016) Plant Biotechnol. J.
    • Cai, Y.1
  • 86
    • 84875871194 scopus 로고    scopus 로고
    • Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes
    • Sun, Z., et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun., 4, 2013, 1594.
    • (2013) Nat. Commun. , vol.4 , pp. 1594
    • Sun, Z.1
  • 87
    • 84899428316 scopus 로고    scopus 로고
    • Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes
    • Grahn, T.H.M., et al. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J. Biol. Chem. 289 (2014), 12029–12039.
    • (2014) J. Biol. Chem. , vol.289 , pp. 12029-12039
    • Grahn, T.H.M.1
  • 88
    • 77954003389 scopus 로고    scopus 로고
    • Seed-based expression systems for plant molecular farming
    • Boothe, J., et al. Seed-based expression systems for plant molecular farming. Plant Biotechnol. J. 8 (2010), 588–606.
    • (2010) Plant Biotechnol. J. , vol.8 , pp. 588-606
    • Boothe, J.1
  • 89
    • 84988429289 scopus 로고    scopus 로고
    • The plant lipidome in human and environmental health
    • Horn, P.J., Benning, C., The plant lipidome in human and environmental health. Science 353 (2016), 1228–1232.
    • (2016) Science , vol.353 , pp. 1228-1232
    • Horn, P.J.1    Benning, C.2
  • 90
    • 84894273189 scopus 로고    scopus 로고
    • Energy densification in vegetative biomass through metabolic engineering
    • Vanhercke, T., et al. Energy densification in vegetative biomass through metabolic engineering. Biocatal. Agric. Biotechnol. 3 (2014), 75–80.
    • (2014) Biocatal. Agric. Biotechnol. , vol.3 , pp. 75-80
    • Vanhercke, T.1
  • 91
    • 84967566826 scopus 로고    scopus 로고
    • Engineering oil accumulation in vegetative tissue
    • T.A. McKeon Academic Press and AOCS Press
    • Weselake, R.J., et al. Engineering oil accumulation in vegetative tissue. McKeon, T.A., (eds.) Industrial Oil Crops, 2016, Academic Press and AOCS Press, 413–434.
    • (2016) Industrial Oil Crops , pp. 413-434
    • Weselake, R.J.1
  • 92
    • 84968756840 scopus 로고    scopus 로고
    • Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues
    • Xu, C., Shanklin, J., Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu. Rev. Plant Biol. 67 (2016), 179–206.
    • (2016) Annu. Rev. Plant Biol. , vol.67 , pp. 179-206
    • Xu, C.1    Shanklin, J.2
  • 93
    • 84892863403 scopus 로고    scopus 로고
    • Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves
    • Vanhercke, T., et al. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 12 (2014), 231–239.
    • (2014) Plant Biotechnol. J. , vol.12 , pp. 231-239
    • Vanhercke, T.1
  • 94
    • 85010002492 scopus 로고    scopus 로고
    • Step changes in leaf oil accumulation via iterative metabolic engineering
    • Vanhercke, T., et al. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab. Eng. 39 (2016), 237–246.
    • (2016) Metab. Eng. , vol.39 , pp. 237-246
    • Vanhercke, T.1
  • 95
    • 85028274136 scopus 로고    scopus 로고
    • Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism
    • Hofvander, P., et al. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotechnol. J. 14 (2016), 1883–1898.
    • (2016) Plant Biotechnol. J. , vol.14 , pp. 1883-1898
    • Hofvander, P.1
  • 96
    • 84978886104 scopus 로고    scopus 로고
    • Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy
    • Liu, Q., et al. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. Plant Biotechnol. J. 15 (2016), 56–67.
    • (2016) Plant Biotechnol. J. , vol.15 , pp. 56-67
    • Liu, Q.1
  • 97
    • 84878436289 scopus 로고    scopus 로고
    • In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density
    • Winichayakul, S., et al. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol. 162 (2013), 626–639.
    • (2013) Plant Physiol. , vol.162 , pp. 626-639
    • Winichayakul, S.1
  • 98
    • 85016597027 scopus 로고    scopus 로고
    • Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves
    • Published online January 13
    • Yurchenko, O., et al. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. Plant Biotechnol. J., 2017, 10.1111/pbi.12695 Published online January 13, 2017.
    • (2017) Plant Biotechnol. J.
    • Yurchenko, O.1
  • 99
    • 84928008023 scopus 로고    scopus 로고
    • Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids
    • Reynolds, K.B., et al. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front. Plant Sci., 6, 2015, 164.
    • (2015) Front. Plant Sci. , vol.6 , pp. 164
    • Reynolds, K.B.1
  • 100
    • 84959449436 scopus 로고    scopus 로고
    • Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production
    • Zhu, L.H., et al. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci. Rep., 6, 2016, 22181.
    • (2016) Sci. Rep. , vol.6 , pp. 22181
    • Zhu, L.H.1
  • 101
    • 84895735915 scopus 로고    scopus 로고
    • Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites
    • Pol, A., et al. Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J. Cell Biol. 204 (2014), 635–646.
    • (2014) J. Cell Biol. , vol.204 , pp. 635-646
    • Pol, A.1
  • 102
    • 84898645712 scopus 로고    scopus 로고
    • Lipid droplet biogenesis
    • Wilfling, F., et al. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29 (2014), 39–45.
    • (2014) Curr. Opin. Cell Biol. , vol.29 , pp. 39-45
    • Wilfling, F.1
  • 103
    • 84961189674 scopus 로고    scopus 로고
    • Targeting fat: mechanisms of protein localization to lipid droplets
    • Kory, N., et al. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol. 26 (2016), 535–546.
    • (2016) Trends Cell Biol. , vol.26 , pp. 535-546
    • Kory, N.1
  • 104
    • 84978680317 scopus 로고    scopus 로고
    • The lipid droplet − a well-connected organelle
    • Gao, Q., Goodman, J.M., The lipid droplet − a well-connected organelle. Front. Cell Dev. Biol., 3, 2015, 49.
    • (2015) Front. Cell Dev. Biol. , vol.3 , pp. 49
    • Gao, Q.1    Goodman, J.M.2
  • 105
    • 84969677578 scopus 로고    scopus 로고
    • The physics of lipid droplet nucleation, growth and budding
    • Thiam, A.R., Forêt, L., The physics of lipid droplet nucleation, growth and budding. Biochim. Biophys. Acta 1861 (2016), 715–722.
    • (2016) Biochim. Biophys. Acta , vol.1861 , pp. 715-722
    • Thiam, A.R.1    Forêt, L.2
  • 106
    • 85013254075 scopus 로고    scopus 로고
    • Lipid droplet growth: regulation of a dynamic organelle
    • Barneda, D., Christian, M., Lipid droplet growth: regulation of a dynamic organelle. Curr. Opin. Cell Biol. 47 (2017), 9–15.
    • (2017) Curr. Opin. Cell Biol. , vol.47 , pp. 9-15
    • Barneda, D.1    Christian, M.2
  • 107
    • 78650281500 scopus 로고    scopus 로고
    • Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination
    • Hsiao, E.S., Tzen, J.T., Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination. Plant Physiol. Biochem. 49 (2011), 77–81.
    • (2011) Plant Physiol. Biochem. , vol.49 , pp. 77-81
    • Hsiao, E.S.1    Tzen, J.T.2
  • 108
    • 84940932767 scopus 로고    scopus 로고
    • Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during postgerminative seedling growth in Arabidopsis
    • Deruyffelaere, C., et al. Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during postgerminative seedling growth in Arabidopsis. Plant Cell Physiol. 56 (2015), 1374–1387.
    • (2015) Plant Cell Physiol. , vol.56 , pp. 1374-1387
    • Deruyffelaere, C.1
  • 109
    • 24044440820 scopus 로고    scopus 로고
    • LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves
    • Santos Mendoza, M., et al. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 579 (2005), 4666–4670.
    • (2005) FEBS Lett. , vol.579 , pp. 4666-4670
    • Santos Mendoza, M.1
  • 110
    • 77950991763 scopus 로고    scopus 로고
    • Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass
    • Andrianov, V., et al. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 8 (2010), 277–287.
    • (2010) Plant Biotechnol. J. , vol.8 , pp. 277-287
    • Andrianov, V.1
  • 111
    • 70349637134 scopus 로고    scopus 로고
    • At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase
    • Ghosh, A.K., et al. At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 151 (2009), 869–881.
    • (2009) Plant Physiol. , vol.151 , pp. 869-881
    • Ghosh, A.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.