-
1
-
-
84950237401
-
Discovering hospital admission patterns using models learnt from electronic hospital records
-
[1] Arandjelović, Ognjen, Discovering hospital admission patterns using models learnt from electronic hospital records. Bioinformatics, 2015.
-
(2015)
Bioinformatics
-
-
Arandjelović, O.1
-
2
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
[4] Bengio, Yoshua, Simard, Patrice, Frasconi, Paolo, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5:2 (1994), 157–166.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
3
-
-
85018643549
-
-
Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, Yan Liu, Recurrent Neural Networks for Multivariate Time Series with Missing Values, arXiv preprint Available from: <>. arXiv:1606.0186
-
[5] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, Yan Liu, Recurrent Neural Networks for Multivariate Time Series with Missing Values, 2016. arXiv preprint Available from: < arXiv:1606.0186>.
-
(2016)
-
-
-
4
-
-
84991721533
-
Risk prediction with electronic health records: a deep learning approach
-
SIAM
-
[6] Cheng, Yu, Wang, Fei, Zhang, Ping, Hu, Jianying, Risk prediction with electronic health records: a deep learning approach. SIAM International Conference on Data Mining, 2016, SIAM.
-
(2016)
SIAM International Conference on Data Mining
-
-
Cheng, Y.1
Wang, F.2
Zhang, P.3
Hu, J.4
-
5
-
-
85018636197
-
-
Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks, arXiv preprint Available from: <>. arXiv:1511.05942
-
[7] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks, 2015. arXiv preprint Available from: < arXiv:1511.05942>.
-
(2015)
-
-
-
6
-
-
85018679038
-
-
Retain: an interpretable predictive model for healthcare using reverse time attention mechanism, in: Advances in Neural Information Processing Systems,
-
[8] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, Walter Stewart, Retain: an interpretable predictive model for healthcare using reverse time attention mechanism, in: Advances in Neural Information Processing Systems, 2016, pp. 3504–3512.
-
(2016)
, pp. 3504-3512
-
-
Edward Choi, E.1
Mohammad Taha Bahadori, T.2
Jimeng Sun, J.3
Joshua Kulas, J.4
Andy Schuetz, A.5
Walter Stewart, W.6
-
7
-
-
85014902153
-
Learning low-dimensional representations of medical concepts
-
[9] Choi, Youngduck, Learning low-dimensional representations of medical concepts. Proc. AMIA Summit Clin. Res. Inform. (CRI), 2016.
-
(2016)
Proc. AMIA Summit Clin. Res. Inform. (CRI)
-
-
Choi, Y.1
-
8
-
-
0026217369
-
A nursing model for chronic illness management based upon the trajectory framework
-
[10] Corbin, Juliet M., Strauss, Anselm, A nursing model for chronic illness management based upon the trajectory framework. Res. Theory Nurs. Pract. 5:3 (1991), 155–174.
-
(1991)
Res. Theory Nurs. Pract.
, vol.5
, Issue.3
, pp. 155-174
-
-
Corbin, J.M.1
Strauss, A.2
-
9
-
-
84938596257
-
A comparison of models for predicting early hospital readmissions
-
[13] Futoma, Joseph, Morris, Jonathan, Lucas, Joseph, A comparison of models for predicting early hospital readmissions. J. Biomed. Inform. 56 (2015), 229–238.
-
(2015)
J. Biomed. Inform.
, vol.56
, pp. 229-238
-
-
Futoma, J.1
Morris, J.2
Lucas, J.3
-
10
-
-
33747065564
-
Caring for patients with chronic heart failure: the trajectory model
-
[14] Granger, Bradi B., Moser, Debra, Germino, Barbara, Harrell, Joanne, Ekman, Inger, Caring for patients with chronic heart failure: the trajectory model. Eur. J. Cardiovascular Nurs. 5:3 (2006), 222–227.
-
(2006)
Eur. J. Cardiovascular Nurs.
, vol.5
, Issue.3
, pp. 222-227
-
-
Granger, B.B.1
Moser, D.2
Germino, B.3
Harrell, J.4
Ekman, I.5
-
11
-
-
85018654432
-
-
Generating Sequences with Recurrent Neural Networks, arXiv preprint Available from: <>. arXiv:1308.0850
-
[15] Alex Graves, Generating Sequences with Recurrent Neural Networks, 2013. arXiv preprint Available from: < arXiv:1308.0850>.
-
(2013)
-
-
Alex Graves, A.1
-
12
-
-
85018660855
-
-
Unconstrained on-line handwriting recognition with recurrent neural networks, in: Advances in Neural Information Processing Systems,
-
[16] Alex Graves, Marcus Liwicki, Horst Bunke, Jürgen Schmidhuber, Santiago Fernández, Unconstrained on-line handwriting recognition with recurrent neural networks, in: Advances in Neural Information Processing Systems, 2008, pp. 577–584.
-
(2008)
, pp. 577-584
-
-
Alex Graves, A.1
Marcus Liwicki, M.2
Horst Bunke, H.3
Jürgen Schmidhuber, S.4
Santiago Fernández, S.5
-
13
-
-
64849110608
-
A novel connectionist system for unconstrained handwriting recognition
-
[17] Graves, Alex, Liwicki, Marcus, Fernández, Santiago, Bertolami, Roman, Bunke, Horst, Schmidhuber, Jürgen, A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31:5 (2009), 855–868.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.5
, pp. 855-868
-
-
Graves, A.1
Liwicki, M.2
Fernández, S.3
Bertolami, R.4
Bunke, H.5
Schmidhuber, J.6
-
14
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
IEEE
-
[18] Graves, Alex, Mohamed, Abdel-rahman, Hinton, Geoffrey, Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, IEEE, 6645–6649.
-
(2013)
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.-R.2
Hinton, G.3
-
15
-
-
79955861721
-
Health and illness over time: the trajectory perspective in nursing science
-
[19] Henly, Susan J., Wyman, Jean F., Findorff, Mary J., Health and illness over time: the trajectory perspective in nursing science. Nursing Res., 60(Suppl. 3), 2011, S5.
-
(2011)
Nursing Res.
, vol.60
, pp. S5
-
-
Henly, S.J.1
Wyman, J.F.2
Findorff, M.J.3
-
16
-
-
0031573117
-
Long short-term memory
-
[21] Hochreiter, Sepp, Schmidhuber, Jürgen, Long short-term memory. Neural Comput. 9:8 (1997), 1735–1780.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
17
-
-
84940382887
-
Parameterizing time in electronic health record studies
-
[22] Hripcsak, George, Albers, David J., Perotte, Adler, Parameterizing time in electronic health record studies. J. Am. Med. Inform. Assoc., 2015, ocu051.
-
(2015)
J. Am. Med. Inform. Assoc.
, pp. ocu051
-
-
Hripcsak, G.1
Albers, D.J.2
Perotte, A.3
-
18
-
-
84892611453
-
Similarity measure between patient traces for clinical pathway analysis: problem, method, and applications
-
[23] Huang, Zhengxing, Dong, Wei, Duan, Huilong, Li, Haomin, Similarity measure between patient traces for clinical pathway analysis: problem, method, and applications. IEEE J. Biomed. Health Inform. 18:1 (2014), 4–14.
-
(2014)
IEEE J. Biomed. Health Inform.
, vol.18
, Issue.1
, pp. 4-14
-
-
Huang, Z.1
Dong, W.2
Duan, H.3
Li, H.4
-
19
-
-
0142105862
-
Multistate Markov models for disease progression with classification error
-
[24] Jackson, Christopher H., Sharples, Linda D., Thompson, Simon G., Duffy, Stephen W., Couto, Elisabeth, Multistate Markov models for disease progression with classification error. J. Roy. Stat. Soc.: Ser. D (The Statistician) 52:2 (2003), 193–209.
-
(2003)
J. Roy. Stat. Soc.: Ser. D (The Statistician)
, vol.52
, Issue.2
, pp. 193-209
-
-
Jackson, C.H.1
Sharples, L.D.2
Thompson, S.G.3
Duffy, S.W.4
Couto, E.5
-
20
-
-
84903473624
-
Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients
-
[25] Jensen, Anders Boeck, Moseley, Pope L., Oprea, Tudor I., Ellesøe, Sabrina Gade, Eriksson, Robert, Schmock, Henriette, Jensen, Peter Bjødstrup, Jensen, Lars Juhl, Brunak, Søren, Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat. Commun., 5, 2014.
-
(2014)
Nat. Commun.
, vol.5
-
-
Jensen, A.B.1
Moseley, P.L.2
Oprea, T.I.3
Ellesøe, S.G.4
Eriksson, R.5
Schmock, H.6
Jensen, P.B.7
Jensen, L.J.8
Brunak, S.9
-
21
-
-
84861235431
-
Mining electronic health records: towards better research applications and clinical care
-
[26] Jensen, Peter B., Jensen, Lars J., Brunak, Søren, Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13:6 (2012), 395–405.
-
(2012)
Nat. Rev. Genet.
, vol.13
, Issue.6
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
22
-
-
84930630277
-
Deep learning
-
[27] LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey, Deep learning. Nature 521:7553 (2015), 436–444.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
23
-
-
84922784970
-
Deep learning for healthcare decision making with EMRs
-
IEEE
-
[28] Liang, Zhaohui, Zhang, Gang, Huang, Jimmy Xiangji, Hu, Qmming Vivian, Deep learning for healthcare decision making with EMRs. 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2016, IEEE, 556–559.
-
(2016)
2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
, pp. 556-559
-
-
Liang, Z.1
Zhang, G.2
Huang, J.X.3
Hu, Q.V.4
-
24
-
-
85083954099
-
Learning to diagnose with LSTM recurrent neural networks,
-
[29] Z. Lipton, D. Kale, C. Elkan, R. Wetzel, Learning to diagnose with LSTM recurrent neural networks, in: International Conference on Learning Representations (ICLR 2016), 2016.
-
(2016)
International Conference on Learning Representations (ICLR 2016)
-
-
Lipton, Z.1
Kale, D.2
Elkan, C.3
Wetzel, R.4
-
25
-
-
84954089313
-
Temporal phenotyping from longitudinal electronic health records: a graph based framework
-
ACM
-
[30] Liu, Chuanren, Wang, Fei, Hu, Jianying, Xiong, Hui, Temporal phenotyping from longitudinal electronic health records: a graph based framework. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, ACM, 705–714.
-
(2015)
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 705-714
-
-
Liu, C.1
Wang, F.2
Hu, J.3
Xiong, H.4
-
26
-
-
85018634197
-
Prospective infectious disease outbreak detection using Markov switching models
-
[31] Lu, H.M., Zeng, D., Chen, H.C., Prospective infectious disease outbreak detection using Markov switching models. IEEE Trans. Knowl. Data Eng., 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
-
-
Lu, H.M.1
Zeng, D.2
Chen, H.C.3
-
27
-
-
85018642716
-
Deepr: a convolutional net for medical records
-
[32] Nguyen, Phuoc, Tran, Truyen, Wickramasinghe, Nilmini, Venkatesh, Svetha, Deepr: a convolutional net for medical records. IEEE J. Biomed. Health Inform., 2016.
-
(2016)
IEEE J. Biomed. Health Inform.
-
-
Nguyen, P.1
Tran, T.2
Wickramasinghe, N.3
Venkatesh, S.4
-
28
-
-
84927930192
-
Learning parts-based representations with nonnegative restricted Boltzmann machine,
-
Proc. of 5th Asian Conference on Machine Learning (ACML), Canberra, Australia, Nov
-
[33] T.D. Nguyen, T. Tran, D. Phung, S. Venkatesh, Learning parts-based representations with nonnegative restricted Boltzmann machine, in: Proc. of 5th Asian Conference on Machine Learning (ACML), Canberra, Australia, Nov 2013.
-
(2013)
-
-
Nguyen, T.D.1
Tran, T.2
Phung, D.3
Venkatesh, S.4
-
29
-
-
84945529896
-
Graph-induced restricted Boltzmann machines for document modeling
-
[34] Nguyen, Tu Dinh, Tran, Truyen, Phung, Dinh, Venkatesh, Svetha, Graph-induced restricted Boltzmann machines for document modeling. Inform. Sci. 328 (2016), 60–75.
-
(2016)
Inform. Sci.
, vol.328
, pp. 60-75
-
-
Nguyen, T.D.1
Tran, T.2
Phung, D.3
Venkatesh, S.4
-
30
-
-
84897047170
-
Temporal abstraction and temporal Bayesian networks in clinical domains: a survey
-
[35] Orphanou, Kalia, Stassopoulou, Athena, Keravnou, Elpida, Temporal abstraction and temporal Bayesian networks in clinical domains: a survey. Artif. Intell. Med. 60:3 (2014), 133–149.
-
(2014)
Artif. Intell. Med.
, vol.60
, Issue.3
, pp. 133-149
-
-
Orphanou, K.1
Stassopoulou, A.2
Keravnou, E.3
-
31
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
[36] Pascanu, Razvan, Mikolov, Tomas, Bengio, Yoshua, On the difficulty of training recurrent neural networks. ICML (3) 28 (2013), 1310–1318.
-
(2013)
ICML (3)
, vol.28
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
32
-
-
84901259802
-
-
Developing predictive models using electronic medical records: challenges and pitfalls, in: AMIA,
-
[37] Chris Paxton, Suchi Saria, Alexandru Niculescu-Mizil, Developing predictive models using electronic medical records: challenges and pitfalls, in: AMIA, 2013.
-
(2013)
-
-
Chris Paxton, C.1
Suchi Saria, S.2
Alexandru Niculescu-Mizil, A.3
-
33
-
-
84987971648
-
Deepcare: a deep dynamic memory model for predictive medicine
-
ACM
-
[38] Pham, Trang, Tran, Truyen, Phung, Dinh, Venkatesh, Svetha, Deepcare: a deep dynamic memory model for predictive medicine. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2016, ACM, 30–41.
-
(2016)
Pacific-Asia Conference on Knowledge Discovery and Data Mining
, pp. 30-41
-
-
Pham, T.1
Tran, T.2
Phung, D.3
Venkatesh, S.4
-
34
-
-
85019136679
-
-
Faster training of very deep networks via p-norm gates, in: ICPR’16,
-
[39] Trang Pham, Truyen Tran, Dinh Phung, Svetha Venkatesh, Faster training of very deep networks via p-norm gates, in: ICPR’16, 2016.
-
(2016)
-
-
Trang Pham, T.1
Truyen Tran, T.T.2
Dinh Phung, D.3
Svetha Venkatesh, S.4
-
35
-
-
85018628041
-
Irregular-time Bayesian Networks
-
UAI
-
[40] Ramati, Michael, Shahar, Yuval, Irregular-time Bayesian Networks. 2010, UAI.
-
(2010)
-
-
Ramati, M.1
Shahar, Y.2
-
36
-
-
0242541783
-
Prospective medicine: the next health care transformation
-
[41] Snyderman, Ralph, Williams, R. Sanders, Prospective medicine: the next health care transformation. Acad. Med. 78:11 (2003), 1079–1084.
-
(2003)
Acad. Med.
, vol.78
, Issue.11
, pp. 1079-1084
-
-
Snyderman, R.1
Williams, R.S.2
-
37
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
[42] Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, Salakhutdinov, Ruslan, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
38
-
-
67651009834
-
Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating
-
Springer
-
[43] Steyerberg, Ewout W., Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. 2009, Springer.
-
(2009)
-
-
Steyerberg, E.W.1
-
39
-
-
84928547704
-
-
Le, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems,
-
[44] Ilya Sutskever, Oriol Vinyals, Quoc V.V. Le, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.
-
(2014)
, pp. 79-3112
-
-
Ilya Sutskever, I.1
Oriol Vinyals, O.2
Quoc, V.V.3
-
40
-
-
84924049094
-
A framework for feature extraction from hospital medical data with applications in risk prediction
-
[45] Tran, Truyen, Luo, Wei, Phung, Dinh, Gupta, Sunil, Rana, Santu, Kennedy, Richard L., Larkins, Ann, Venkatesh, Svetha, A framework for feature extraction from hospital medical data with applications in risk prediction. BMC Bioinform., 15(1), 2014, 6596.
-
(2014)
BMC Bioinform.
, vol.15
, Issue.1
, pp. 6596
-
-
Tran, T.1
Luo, W.2
Phung, D.3
Gupta, S.4
Rana, S.5
Kennedy, R.L.6
Larkins, A.7
Venkatesh, S.8
-
41
-
-
84927945601
-
Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM)
-
[46] Tran, Truyen, Nguyen, Tu Dinh, Phung, Dinh, Venkatesh, Svetha, Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J. Biomed. Inform. 54 (2015), 96–105.
-
(2015)
J. Biomed. Inform.
, vol.54
, pp. 96-105
-
-
Tran, T.1
Nguyen, T.D.2
Phung, D.3
Venkatesh, S.4
-
42
-
-
84945566410
-
An integrated framework for suicide risk prediction
-
ACM
-
[47] Tran, Truyen, Phung, Dinh, Luo, Wei, Harvey, Richard, Berk, Michael, Venkatesh, Svetha, An integrated framework for suicide risk prediction. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, ACM, 1410–1418.
-
(2013)
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1410-1418
-
-
Tran, T.1
Phung, D.2
Luo, W.3
Harvey, R.4
Berk, M.5
Venkatesh, S.6
-
43
-
-
84895932399
-
Stabilized sparse ordinal regression for medical risk stratification
-
[48] Tran, Truyen, Phung, Dinh, Luo, Wei, Venkatesh, Svetha, Stabilized sparse ordinal regression for medical risk stratification. Knowl. Inform. Syst., 2014, 10.1007/s10115-014-0740-4.
-
(2014)
Knowl. Inform. Syst.
-
-
Tran, T.1
Phung, D.2
Luo, W.3
Venkatesh, S.4
-
44
-
-
84871741964
-
A framework for mining signatures from event sequences and its applications in healthcare data
-
[49] Wang, Fei, Lee, Noah, Hu, Jianying, Sun, Jimeng, Ebadollahi, Shahram, Laine, Andrew F., A framework for mining signatures from event sequences and its applications in healthcare data. IEEE Trans. Pattern Anal. Mach. Intell. 35:2 (2013), 272–285.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.2
, pp. 272-285
-
-
Wang, F.1
Lee, N.2
Hu, J.3
Sun, J.4
Ebadollahi, S.5
Laine, A.F.6
-
45
-
-
84907021735
-
Unsupervised learning of disease progression models
-
ACM
-
[50] Wang, Xiang, Sontag, David, Wang, Fei, Unsupervised learning of disease progression models. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, ACM, 85–94.
-
(2014)
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 85-94
-
-
Wang, X.1
Sontag, D.2
Wang, F.3
-
46
-
-
85006158663
-
Learning from heterogeneous temporal data in electronic health records
-
[51] Zhao, Jing, Papapetrou, Panagiotis, Asker, Lars, Boström, Henrik, Learning from heterogeneous temporal data in electronic health records. J. Biomed. Inform. 65 (2017), 105–119.
-
(2017)
J. Biomed. Inform.
, vol.65
, pp. 105-119
-
-
Zhao, J.1
Papapetrou, P.2
Asker, L.3
Boström, H.4
|