메뉴 건너뛰기




Volumn 69, Issue , 2017, Pages 218-229

Predicting healthcare trajectories from medical records: A deep learning approach

Author keywords

Electronic medical records; Healthcare processes; Irregular timing; Long Short Term Memory; Predictive medicine

Indexed keywords

BRAIN; DEEP LEARNING; DEEP NEURAL NETWORKS; DISEASES; FORECASTING; HEALTH; HEALTH CARE; MEDICAL COMPUTING; MEDICINE; NEURAL NETWORKS;

EID: 85018652748     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2017.04.001     Document Type: Article
Times cited : (364)

References (46)
  • 1
    • 84950237401 scopus 로고    scopus 로고
    • Discovering hospital admission patterns using models learnt from electronic hospital records
    • [1] Arandjelović, Ognjen, Discovering hospital admission patterns using models learnt from electronic hospital records. Bioinformatics, 2015.
    • (2015) Bioinformatics
    • Arandjelović, O.1
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • [4] Bengio, Yoshua, Simard, Patrice, Frasconi, Paolo, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5:2 (1994), 157–166.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 85018643549 scopus 로고    scopus 로고
    • Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, Yan Liu, Recurrent Neural Networks for Multivariate Time Series with Missing Values, arXiv preprint Available from: <>. arXiv:1606.0186
    • [5] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, Yan Liu, Recurrent Neural Networks for Multivariate Time Series with Missing Values, 2016. arXiv preprint Available from: < arXiv:1606.0186>.
    • (2016)
  • 5
    • 85018636197 scopus 로고    scopus 로고
    • Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks, arXiv preprint Available from: <>. arXiv:1511.05942
    • [7] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks, 2015. arXiv preprint Available from: < arXiv:1511.05942>.
    • (2015)
  • 6
    • 85018679038 scopus 로고    scopus 로고
    • Retain: an interpretable predictive model for healthcare using reverse time attention mechanism, in: Advances in Neural Information Processing Systems,
    • [8] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, Walter Stewart, Retain: an interpretable predictive model for healthcare using reverse time attention mechanism, in: Advances in Neural Information Processing Systems, 2016, pp. 3504–3512.
    • (2016) , pp. 3504-3512
    • Edward Choi, E.1    Mohammad Taha Bahadori, T.2    Jimeng Sun, J.3    Joshua Kulas, J.4    Andy Schuetz, A.5    Walter Stewart, W.6
  • 7
    • 85014902153 scopus 로고    scopus 로고
    • Learning low-dimensional representations of medical concepts
    • [9] Choi, Youngduck, Learning low-dimensional representations of medical concepts. Proc. AMIA Summit Clin. Res. Inform. (CRI), 2016.
    • (2016) Proc. AMIA Summit Clin. Res. Inform. (CRI)
    • Choi, Y.1
  • 8
    • 0026217369 scopus 로고
    • A nursing model for chronic illness management based upon the trajectory framework
    • [10] Corbin, Juliet M., Strauss, Anselm, A nursing model for chronic illness management based upon the trajectory framework. Res. Theory Nurs. Pract. 5:3 (1991), 155–174.
    • (1991) Res. Theory Nurs. Pract. , vol.5 , Issue.3 , pp. 155-174
    • Corbin, J.M.1    Strauss, A.2
  • 9
    • 84938596257 scopus 로고    scopus 로고
    • A comparison of models for predicting early hospital readmissions
    • [13] Futoma, Joseph, Morris, Jonathan, Lucas, Joseph, A comparison of models for predicting early hospital readmissions. J. Biomed. Inform. 56 (2015), 229–238.
    • (2015) J. Biomed. Inform. , vol.56 , pp. 229-238
    • Futoma, J.1    Morris, J.2    Lucas, J.3
  • 10
    • 33747065564 scopus 로고    scopus 로고
    • Caring for patients with chronic heart failure: the trajectory model
    • [14] Granger, Bradi B., Moser, Debra, Germino, Barbara, Harrell, Joanne, Ekman, Inger, Caring for patients with chronic heart failure: the trajectory model. Eur. J. Cardiovascular Nurs. 5:3 (2006), 222–227.
    • (2006) Eur. J. Cardiovascular Nurs. , vol.5 , Issue.3 , pp. 222-227
    • Granger, B.B.1    Moser, D.2    Germino, B.3    Harrell, J.4    Ekman, I.5
  • 11
    • 85018654432 scopus 로고    scopus 로고
    • Generating Sequences with Recurrent Neural Networks, arXiv preprint Available from: <>. arXiv:1308.0850
    • [15] Alex Graves, Generating Sequences with Recurrent Neural Networks, 2013. arXiv preprint Available from: < arXiv:1308.0850>.
    • (2013)
    • Alex Graves, A.1
  • 12
    • 85018660855 scopus 로고    scopus 로고
    • Unconstrained on-line handwriting recognition with recurrent neural networks, in: Advances in Neural Information Processing Systems,
    • [16] Alex Graves, Marcus Liwicki, Horst Bunke, Jürgen Schmidhuber, Santiago Fernández, Unconstrained on-line handwriting recognition with recurrent neural networks, in: Advances in Neural Information Processing Systems, 2008, pp. 577–584.
    • (2008) , pp. 577-584
    • Alex Graves, A.1    Marcus Liwicki, M.2    Horst Bunke, H.3    Jürgen Schmidhuber, S.4    Santiago Fernández, S.5
  • 15
    • 79955861721 scopus 로고    scopus 로고
    • Health and illness over time: the trajectory perspective in nursing science
    • [19] Henly, Susan J., Wyman, Jean F., Findorff, Mary J., Health and illness over time: the trajectory perspective in nursing science. Nursing Res., 60(Suppl. 3), 2011, S5.
    • (2011) Nursing Res. , vol.60 , pp. S5
    • Henly, S.J.1    Wyman, J.F.2    Findorff, M.J.3
  • 16
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • [21] Hochreiter, Sepp, Schmidhuber, Jürgen, Long short-term memory. Neural Comput. 9:8 (1997), 1735–1780.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 17
  • 18
    • 84892611453 scopus 로고    scopus 로고
    • Similarity measure between patient traces for clinical pathway analysis: problem, method, and applications
    • [23] Huang, Zhengxing, Dong, Wei, Duan, Huilong, Li, Haomin, Similarity measure between patient traces for clinical pathway analysis: problem, method, and applications. IEEE J. Biomed. Health Inform. 18:1 (2014), 4–14.
    • (2014) IEEE J. Biomed. Health Inform. , vol.18 , Issue.1 , pp. 4-14
    • Huang, Z.1    Dong, W.2    Duan, H.3    Li, H.4
  • 21
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: towards better research applications and clinical care
    • [26] Jensen, Peter B., Jensen, Lars J., Brunak, Søren, Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13:6 (2012), 395–405.
    • (2012) Nat. Rev. Genet. , vol.13 , Issue.6 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [27] LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey, Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 26
    • 85018634197 scopus 로고    scopus 로고
    • Prospective infectious disease outbreak detection using Markov switching models
    • [31] Lu, H.M., Zeng, D., Chen, H.C., Prospective infectious disease outbreak detection using Markov switching models. IEEE Trans. Knowl. Data Eng., 2009.
    • (2009) IEEE Trans. Knowl. Data Eng.
    • Lu, H.M.1    Zeng, D.2    Chen, H.C.3
  • 28
    • 84927930192 scopus 로고    scopus 로고
    • Learning parts-based representations with nonnegative restricted Boltzmann machine,
    • Proc. of 5th Asian Conference on Machine Learning (ACML), Canberra, Australia, Nov
    • [33] T.D. Nguyen, T. Tran, D. Phung, S. Venkatesh, Learning parts-based representations with nonnegative restricted Boltzmann machine, in: Proc. of 5th Asian Conference on Machine Learning (ACML), Canberra, Australia, Nov 2013.
    • (2013)
    • Nguyen, T.D.1    Tran, T.2    Phung, D.3    Venkatesh, S.4
  • 29
    • 84945529896 scopus 로고    scopus 로고
    • Graph-induced restricted Boltzmann machines for document modeling
    • [34] Nguyen, Tu Dinh, Tran, Truyen, Phung, Dinh, Venkatesh, Svetha, Graph-induced restricted Boltzmann machines for document modeling. Inform. Sci. 328 (2016), 60–75.
    • (2016) Inform. Sci. , vol.328 , pp. 60-75
    • Nguyen, T.D.1    Tran, T.2    Phung, D.3    Venkatesh, S.4
  • 30
    • 84897047170 scopus 로고    scopus 로고
    • Temporal abstraction and temporal Bayesian networks in clinical domains: a survey
    • [35] Orphanou, Kalia, Stassopoulou, Athena, Keravnou, Elpida, Temporal abstraction and temporal Bayesian networks in clinical domains: a survey. Artif. Intell. Med. 60:3 (2014), 133–149.
    • (2014) Artif. Intell. Med. , vol.60 , Issue.3 , pp. 133-149
    • Orphanou, K.1    Stassopoulou, A.2    Keravnou, E.3
  • 31
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • [36] Pascanu, Razvan, Mikolov, Tomas, Bengio, Yoshua, On the difficulty of training recurrent neural networks. ICML (3) 28 (2013), 1310–1318.
    • (2013) ICML (3) , vol.28 , pp. 1310-1318
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 32
    • 84901259802 scopus 로고    scopus 로고
    • Developing predictive models using electronic medical records: challenges and pitfalls, in: AMIA,
    • [37] Chris Paxton, Suchi Saria, Alexandru Niculescu-Mizil, Developing predictive models using electronic medical records: challenges and pitfalls, in: AMIA, 2013.
    • (2013)
    • Chris Paxton, C.1    Suchi Saria, S.2    Alexandru Niculescu-Mizil, A.3
  • 35
    • 85018628041 scopus 로고    scopus 로고
    • Irregular-time Bayesian Networks
    • UAI
    • [40] Ramati, Michael, Shahar, Yuval, Irregular-time Bayesian Networks. 2010, UAI.
    • (2010)
    • Ramati, M.1    Shahar, Y.2
  • 36
    • 0242541783 scopus 로고    scopus 로고
    • Prospective medicine: the next health care transformation
    • [41] Snyderman, Ralph, Williams, R. Sanders, Prospective medicine: the next health care transformation. Acad. Med. 78:11 (2003), 1079–1084.
    • (2003) Acad. Med. , vol.78 , Issue.11 , pp. 1079-1084
    • Snyderman, R.1    Williams, R.S.2
  • 38
    • 67651009834 scopus 로고    scopus 로고
    • Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating
    • Springer
    • [43] Steyerberg, Ewout W., Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. 2009, Springer.
    • (2009)
    • Steyerberg, E.W.1
  • 39
    • 84928547704 scopus 로고    scopus 로고
    • Le, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems,
    • [44] Ilya Sutskever, Oriol Vinyals, Quoc V.V. Le, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.
    • (2014) , pp. 79-3112
    • Ilya Sutskever, I.1    Oriol Vinyals, O.2    Quoc, V.V.3
  • 40
    • 84924049094 scopus 로고    scopus 로고
    • A framework for feature extraction from hospital medical data with applications in risk prediction
    • [45] Tran, Truyen, Luo, Wei, Phung, Dinh, Gupta, Sunil, Rana, Santu, Kennedy, Richard L., Larkins, Ann, Venkatesh, Svetha, A framework for feature extraction from hospital medical data with applications in risk prediction. BMC Bioinform., 15(1), 2014, 6596.
    • (2014) BMC Bioinform. , vol.15 , Issue.1 , pp. 6596
    • Tran, T.1    Luo, W.2    Phung, D.3    Gupta, S.4    Rana, S.5    Kennedy, R.L.6    Larkins, A.7    Venkatesh, S.8
  • 41
    • 84927945601 scopus 로고    scopus 로고
    • Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM)
    • [46] Tran, Truyen, Nguyen, Tu Dinh, Phung, Dinh, Venkatesh, Svetha, Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J. Biomed. Inform. 54 (2015), 96–105.
    • (2015) J. Biomed. Inform. , vol.54 , pp. 96-105
    • Tran, T.1    Nguyen, T.D.2    Phung, D.3    Venkatesh, S.4
  • 43
    • 84895932399 scopus 로고    scopus 로고
    • Stabilized sparse ordinal regression for medical risk stratification
    • [48] Tran, Truyen, Phung, Dinh, Luo, Wei, Venkatesh, Svetha, Stabilized sparse ordinal regression for medical risk stratification. Knowl. Inform. Syst., 2014, 10.1007/s10115-014-0740-4.
    • (2014) Knowl. Inform. Syst.
    • Tran, T.1    Phung, D.2    Luo, W.3    Venkatesh, S.4
  • 44
    • 84871741964 scopus 로고    scopus 로고
    • A framework for mining signatures from event sequences and its applications in healthcare data
    • [49] Wang, Fei, Lee, Noah, Hu, Jianying, Sun, Jimeng, Ebadollahi, Shahram, Laine, Andrew F., A framework for mining signatures from event sequences and its applications in healthcare data. IEEE Trans. Pattern Anal. Mach. Intell. 35:2 (2013), 272–285.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.2 , pp. 272-285
    • Wang, F.1    Lee, N.2    Hu, J.3    Sun, J.4    Ebadollahi, S.5    Laine, A.F.6
  • 46
    • 85006158663 scopus 로고    scopus 로고
    • Learning from heterogeneous temporal data in electronic health records
    • [51] Zhao, Jing, Papapetrou, Panagiotis, Asker, Lars, Boström, Henrik, Learning from heterogeneous temporal data in electronic health records. J. Biomed. Inform. 65 (2017), 105–119.
    • (2017) J. Biomed. Inform. , vol.65 , pp. 105-119
    • Zhao, J.1    Papapetrou, P.2    Asker, L.3    Boström, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.