메뉴 건너뛰기




Volumn 22, Issue 4, 2015, Pages 794-804

Parameterizing time in electronic health record studies

Author keywords

Data mining; Electronic health record; Parameterization; Phenotype; Time; Time series

Indexed keywords

ARTICLE; ELECTRONIC MEDICAL RECORD; LABORATORY TEST; PARAMETERIZATION; PARAMETERS; TIME; DATA MINING; HUMAN; THEORETICAL MODEL;

EID: 84940382887     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocu051     Document Type: Article
Times cited : (59)

References (44)
  • 1
    • 84888200992 scopus 로고    scopus 로고
    • Applying active learning to highthroughput phenotyping algorithms for electronic health records data
    • Chen Y, Carroll RJ, McPeek Hinz ER, et al. Applying active learning to highthroughput phenotyping algorithms for electronic health records data. J Am Med Inform Assoc. 2013;20:e253-e259.
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. e253-e259
    • Chen, Y.1    Carroll, R.J.2    McPeek Hinz, E.R.3
  • 2
    • 77956583100 scopus 로고    scopus 로고
    • integration of early physiological responses predicts later illness severity in preterm infants
    • Saria S, Rajani AK, Gould J, et al. integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med. 2010;2(48):48ra65.
    • (2010) Sci Transl Med. , vol.2 , Issue.48 , pp. 48ra65
    • Saria, S.1    Rajani, A.K.2    Gould, J.3
  • 3
    • 84890370603 scopus 로고    scopus 로고
    • Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications
    • Warner JL, Zollanvari A, Ding Q, et al. Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications. J Am Med Inform Assoc. 2013;20:e281-e287.
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. e281-e287
    • Warner, J.L.1    Zollanvari, A.2    Ding, Q.3
  • 4
    • 84865293383 scopus 로고    scopus 로고
    • Exploiting time in electronic health record correlations
    • Hripcsak G, Albers DJ, Perotte A. Exploiting time in electronic health record correlations. J Am Med Informat Assoc. 2011;18(Suppl 1):i109-i115.
    • (2011) J Am Med Informat Assoc. , vol.18 , pp. i109-i115
    • Hripcsak, G.1    Albers, D.J.2    Perotte, A.3
  • 5
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 2013;8:e66341.
    • (2013) PLoS ONE , vol.8 , pp. e66341
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 10
    • 84856065603 scopus 로고    scopus 로고
    • A pattern mining approach for classifying multivariate temporal data
    • Atlanta, Georgia on 2011 Nov 12 to 15, 2011
    • Batal I, Valizadegan H, Cooper GF, et al. A pattern mining approach for classifying multivariate temporal data. In: Proceedings IEEE Int Conf Bioinformatics Biomed. Atlanta, Georgia on 2011 Nov 12 to 15, 2011, 2011;358-365.
    • (2011) Proceedings IEEE Int Conf Bioinformatics Biomed , pp. 358-365
    • Batal, I.1    Valizadegan, H.2    Cooper, G.F.3
  • 11
    • 81355127388 scopus 로고    scopus 로고
    • Temporal pattern discovery in longitudinal electronic patient records
    • Noren GN, Hopstadius J, Bate A, et al. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Discov. 2010;20:361-387.
    • (2010) Data Min Knowl Discov. , vol.20 , pp. 361-387
    • Noren, G.N.1    Hopstadius, J.2    Bate, A.3
  • 12
    • 67650499257 scopus 로고    scopus 로고
    • Intelligent interactive visual exploration of temporal associations among multiple time-oriented patient records
    • Klimov D, Shahar Y, Taieb-Maimon M. Intelligent interactive visual exploration of temporal associations among multiple time-oriented patient records. Methods Inf Med. 2009;48(3):254-262.
    • (2009) Methods Inf Med. , vol.48 , Issue.3 , pp. 254-262
    • Klimov, D.1    Shahar, Y.2    Taieb-Maimon, M.3
  • 13
    • 33845455091 scopus 로고    scopus 로고
    • Temporal abstraction in intelligent clinical data analysis: a survey
    • Stacey M, McGregor C. Temporal abstraction in intelligent clinical data analysis: a survey. Artif Intell Med. 2007;39:1-24.
    • (2007) Artif Intell Med. , vol.39 , pp. 1-24
    • Stacey, M.1    McGregor, C.2
  • 14
    • 0031069719 scopus 로고    scopus 로고
    • A framework for knowledge-based temporal abstraction
    • Shahar Y. A framework for knowledge-based temporal abstraction. Artif Intelli. 1997;90(1-2):79-133.
    • (1997) Artif Intelli. , vol.90 , Issue.1-2 , pp. 79-133
    • Shahar, Y.1
  • 15
    • 0032384750 scopus 로고    scopus 로고
    • Dynamic temporal interpretation contexts for temporal abstraction
    • Shahar Y. Dynamic temporal interpretation contexts for temporal abstraction. Ann Math Artif Intell. 1998;22(1-2):159-192.
    • (1998) Ann Math Artif Intell. , vol.22 , Issue.1-2 , pp. 159-192
    • Shahar, Y.1
  • 16
    • 0442314376 scopus 로고    scopus 로고
    • Knowledge-based temporal interpolation
    • Shahar Y. Knowledge-based temporal interpolation. J Exp Theor Artif Intell. 1999;11:123-144.
    • (1999) J Exp Theor Artif Intell. , vol.11 , pp. 123-144
    • Shahar, Y.1
  • 17
    • 79953787924 scopus 로고    scopus 로고
    • Medical temporal-knowledge discovery via temporal abstraction, San Francisco, CA on November 14 to 18, 2009
    • Moskovitch R, Shahar Y. Medical temporal-knowledge discovery via temporal abstraction, San Francisco, CA on November 14 to 18, 2009. AMIA Annu Symp Proc. 2009:452-456.
    • (2009) AMIA Annu Symp Proc. , pp. 452-456
    • Moskovitch, R.1    Shahar, Y.2
  • 18
    • 80052392674 scopus 로고    scopus 로고
    • Robust mining of time intervals with semi-interval partial order patterns
    • Columbus, OH on April 29 to May 1, 2010
    • Moerchen F, Fradkin D. Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of SIAM Data Mining. Columbus, OH on April 29 to May 1, 2010, 2010.
    • (2010) Proceedings of SIAM Data Mining
    • Moerchen, F.1    Fradkin, D.2
  • 20
    • 84882789532 scopus 로고    scopus 로고
    • Temporal reasoning over clinical text: the state of the art
    • Sun W, Rumshisky A, Uzuner O. Temporal reasoning over clinical text: the state of the art. J Am Med Inform Assoc. 2013;20:814-819.
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. 814-819
    • Sun, W.1    Rumshisky, A.2    Uzuner, O.3
  • 21
    • 79953776666 scopus 로고    scopus 로고
    • Mayo clinic smoking status classification system: extensions and improvements
    • Sohn S, Savova GK. Mayo clinic smoking status classification system: extensions and improvements. AMIA Annu Symp Proc. 2009;2009: 619-623.
    • (2009) AMIA Annu Symp Proc. , vol.2009 , pp. 619-623
    • Sohn, S.1    Savova, G.K.2
  • 22
    • 33847640080 scopus 로고    scopus 로고
    • Temporal reasoning with medical data-A review with emphasis on medical natural language processing
    • Zhou L, Hripcsak G. Temporal reasoning with medical data-A review with emphasis on medical natural language processing. J Biomed Inform. 2007; 40:183-202.
    • (2007) J Biomed Inform. , vol.40 , pp. 183-202
    • Zhou, L.1    Hripcsak, G.2
  • 23
    • 60549091164 scopus 로고    scopus 로고
    • Using empirical semantic correlation to interpret temporal assertions in clinical texts
    • Hripcsak G, Elhadad N, Chen C, et al. Using empirical semantic correlation to interpret temporal assertions in clinical texts. J Am Med Inform Assoc. 2009;16:220-227.
    • (2009) J Am Med Inform Assoc. , vol.16 , pp. 220-227
    • Hripcsak, G.1    Elhadad, N.2    Chen, C.3
  • 24
    • 33744823526 scopus 로고    scopus 로고
    • A Bayesian dynamic model for influenza surveillance
    • Sebastiani P, Mandl KD, Szolovits P, et al. A Bayesian dynamic model for influenza surveillance. Stat Med. 2006;25(11):1803-1816.
    • (2006) Stat Med. , vol.25 , Issue.11 , pp. 1803-1816
    • Sebastiani, P.1    Mandl, K.D.2    Szolovits, P.3
  • 27
    • 84890520376 scopus 로고    scopus 로고
    • Correlating electronic health record concepts with healthcare process events
    • Hripcsak G, Albers DJ. Correlating electronic health record concepts with healthcare process events. J Am Med Inform Assoc. 2013;20:e311-e318.
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. e311-e318
    • Hripcsak, G.1    Albers, D.J.2
  • 28
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013;20:117-121
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 29
    • 84890479944 scopus 로고    scopus 로고
    • Electronic health records-driven phenotyping: challenges, recent advances, and perspectives
    • Pathak J1, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc. 2013;20(e2):e206-e211.
    • (2013) J Am Med Inform Assoc. , vol.20 , Issue.E2 , pp. e206-e211
    • Pathak, J.I.1    Kho, A.N.2    Denny, J.C.3
  • 30
    • 58149474394 scopus 로고    scopus 로고
    • Reconstruction of a system's dynamics from short trajectories
    • Komalapriya C, Thiel M, Ramano MC, et al. Reconstruction of a system's dynamics from short trajectories. Phys Rev E. 2008;78:066217.
    • (2008) Phys Rev E. , vol.78 , pp. 066217
    • Komalapriya, C.1    Thiel, M.2    Ramano, M.C.3
  • 31
    • 84859360988 scopus 로고    scopus 로고
    • Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations
    • Albers DJ, Hripcsak G. Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations. Chaos. 2012;22:013111.
    • (2012) Chaos. , vol.22 , pp. 013111
    • Albers, D.J.1    Hripcsak, G.2
  • 34
    • 74249085955 scopus 로고    scopus 로고
    • A statistical dynamics approach to the study of human health data: resolving population scale diurnal variation in laboratory data
    • Albers DJ, Hripcsak G. A statistical dynamics approach to the study of human health data: resolving population scale diurnal variation in laboratory data. Phys Lett A. 2010;374:1159-1164.
    • (2010) Phys Lett A. , vol.374 , pp. 1159-1164
    • Albers, D.J.1    Hripcsak, G.2
  • 35
    • 84871338571 scopus 로고    scopus 로고
    • Population physiology: leveraging electronic health record data to understand human endocrine dynamics
    • Albers DJ, Hripcsak G, Schmidt M. Population physiology: leveraging electronic health record data to understand human endocrine dynamics. PLOS One 2012;7(12):e48058.
    • (2012) PLOS One , vol.7 , Issue.12 , pp. e48058
    • Albers, D.J.1    Hripcsak, G.2    Schmidt, M.3
  • 36
    • 84903172946 scopus 로고    scopus 로고
    • Dynamical phenotyping: using temporal analysis of clinically collected physiologic data to stratify populations
    • Albers DJ, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical phenotyping: using temporal analysis of clinically collected physiologic data to stratify populations. PLOS One 2014;9:e96443.
    • (2014) PLOS One , vol.9 , pp. e96443
    • Albers, D.J.1    Elhadad, N.2    Tabak, E.3    Perotte, A.4    Hripcsak, G.5
  • 41
    • 84959875858 scopus 로고    scopus 로고
    • Modeling clinical time series using Gaussian process sequences
    • SIAM
    • Hauskrecht M, Liu Z, Wu L. Modeling clinical time series using Gaussian process sequences. In: SDM. SIAM 2013:623-631.
    • (2013) SDM , pp. 623-631
    • Hauskrecht, M.1    Liu, Z.2    Wu, L.3
  • 42
    • 84901229950 scopus 로고    scopus 로고
    • Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule
    • Accessed January 11, 2014
    • Office for Civil Rights, Department of Health and Human Services. Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/De-identification/guidance.html Accessed January 11, 2014.
  • 43
    • 84860142886 scopus 로고    scopus 로고
    • Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series
    • Albers DJ, Hripcsak G. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series. Chaos, Solitions, Fract. 2012;45;853-60.
    • (2012) Chaos, Solitions, Fract. , vol.45 , pp. 853-860
    • Albers, D.J.1    Hripcsak, G.2
  • 44
    • 84902264392 scopus 로고    scopus 로고
    • Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome
    • Claassen J, Albers D, Schmidt JM, et al. Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 2014; 75:771-781.
    • (2014) Ann Neurol. , vol.75 , pp. 771-781
    • Claassen, J.1    Albers, D.2    Schmidt, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.