-
1
-
-
84888200992
-
Applying active learning to highthroughput phenotyping algorithms for electronic health records data
-
Chen Y, Carroll RJ, McPeek Hinz ER, et al. Applying active learning to highthroughput phenotyping algorithms for electronic health records data. J Am Med Inform Assoc. 2013;20:e253-e259.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, pp. e253-e259
-
-
Chen, Y.1
Carroll, R.J.2
McPeek Hinz, E.R.3
-
2
-
-
77956583100
-
integration of early physiological responses predicts later illness severity in preterm infants
-
Saria S, Rajani AK, Gould J, et al. integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med. 2010;2(48):48ra65.
-
(2010)
Sci Transl Med.
, vol.2
, Issue.48
, pp. 48ra65
-
-
Saria, S.1
Rajani, A.K.2
Gould, J.3
-
3
-
-
84890370603
-
Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications
-
Warner JL, Zollanvari A, Ding Q, et al. Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications. J Am Med Inform Assoc. 2013;20:e281-e287.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, pp. e281-e287
-
-
Warner, J.L.1
Zollanvari, A.2
Ding, Q.3
-
4
-
-
84865293383
-
Exploiting time in electronic health record correlations
-
Hripcsak G, Albers DJ, Perotte A. Exploiting time in electronic health record correlations. J Am Med Informat Assoc. 2011;18(Suppl 1):i109-i115.
-
(2011)
J Am Med Informat Assoc.
, vol.18
, pp. i109-i115
-
-
Hripcsak, G.1
Albers, D.J.2
Perotte, A.3
-
5
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 2013;8:e66341.
-
(2013)
PLoS ONE
, vol.8
, pp. e66341
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
6
-
-
84940405814
-
-
Annual American Medical Informatics Association Symposium, November 16-20, 2013, Washington, DC
-
Hauskrecht M, Visweswaran S, Cooper G, et al. Data-driven identification of unusual clinical actions in the ICU. Annual American Medical Informatics Association Symposium, November 16-20, 2013, Washington, DC, 2013.
-
(2013)
Data-driven identification of unusual clinical actions in the ICU
-
-
Hauskrecht, M.1
Visweswaran, S.2
Cooper, G.3
-
7
-
-
84940405815
-
-
NIPS 2013 Workshop on Machine Learning for Clinical Data Analysis and Healthcare, Lake Tahoe, Nevada on December 5-8, 2010, December
-
Liu Z, Hauskrecht M. Sparse linear dynamical system with its application in multivariate clinical time series. NIPS 2013 Workshop on Machine Learning for Clinical Data Analysis and Healthcare, Lake Tahoe, Nevada on December 5-8, 2010, December 2013.
-
(2013)
Sparse linear dynamical system with its application in multivariate clinical time series
-
-
Liu, Z.1
Hauskrecht, M.2
-
9
-
-
84866045813
-
-
KDD'12; August 12-16, 2012, Beijing, China
-
Wang F, Lee N, Hu J, et al. Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach. In: KDD'12; August 12-16, 2012, Beijing, China. 2012:453-461.
-
(2012)
Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach
, pp. 453-461
-
-
Wang, F.1
Lee, N.2
Hu, J.3
-
10
-
-
84856065603
-
A pattern mining approach for classifying multivariate temporal data
-
Atlanta, Georgia on 2011 Nov 12 to 15, 2011
-
Batal I, Valizadegan H, Cooper GF, et al. A pattern mining approach for classifying multivariate temporal data. In: Proceedings IEEE Int Conf Bioinformatics Biomed. Atlanta, Georgia on 2011 Nov 12 to 15, 2011, 2011;358-365.
-
(2011)
Proceedings IEEE Int Conf Bioinformatics Biomed
, pp. 358-365
-
-
Batal, I.1
Valizadegan, H.2
Cooper, G.F.3
-
11
-
-
81355127388
-
Temporal pattern discovery in longitudinal electronic patient records
-
Noren GN, Hopstadius J, Bate A, et al. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Discov. 2010;20:361-387.
-
(2010)
Data Min Knowl Discov.
, vol.20
, pp. 361-387
-
-
Noren, G.N.1
Hopstadius, J.2
Bate, A.3
-
12
-
-
67650499257
-
Intelligent interactive visual exploration of temporal associations among multiple time-oriented patient records
-
Klimov D, Shahar Y, Taieb-Maimon M. Intelligent interactive visual exploration of temporal associations among multiple time-oriented patient records. Methods Inf Med. 2009;48(3):254-262.
-
(2009)
Methods Inf Med.
, vol.48
, Issue.3
, pp. 254-262
-
-
Klimov, D.1
Shahar, Y.2
Taieb-Maimon, M.3
-
13
-
-
33845455091
-
Temporal abstraction in intelligent clinical data analysis: a survey
-
Stacey M, McGregor C. Temporal abstraction in intelligent clinical data analysis: a survey. Artif Intell Med. 2007;39:1-24.
-
(2007)
Artif Intell Med.
, vol.39
, pp. 1-24
-
-
Stacey, M.1
McGregor, C.2
-
14
-
-
0031069719
-
A framework for knowledge-based temporal abstraction
-
Shahar Y. A framework for knowledge-based temporal abstraction. Artif Intelli. 1997;90(1-2):79-133.
-
(1997)
Artif Intelli.
, vol.90
, Issue.1-2
, pp. 79-133
-
-
Shahar, Y.1
-
15
-
-
0032384750
-
Dynamic temporal interpretation contexts for temporal abstraction
-
Shahar Y. Dynamic temporal interpretation contexts for temporal abstraction. Ann Math Artif Intell. 1998;22(1-2):159-192.
-
(1998)
Ann Math Artif Intell.
, vol.22
, Issue.1-2
, pp. 159-192
-
-
Shahar, Y.1
-
16
-
-
0442314376
-
Knowledge-based temporal interpolation
-
Shahar Y. Knowledge-based temporal interpolation. J Exp Theor Artif Intell. 1999;11:123-144.
-
(1999)
J Exp Theor Artif Intell.
, vol.11
, pp. 123-144
-
-
Shahar, Y.1
-
17
-
-
79953787924
-
Medical temporal-knowledge discovery via temporal abstraction, San Francisco, CA on November 14 to 18, 2009
-
Moskovitch R, Shahar Y. Medical temporal-knowledge discovery via temporal abstraction, San Francisco, CA on November 14 to 18, 2009. AMIA Annu Symp Proc. 2009:452-456.
-
(2009)
AMIA Annu Symp Proc.
, pp. 452-456
-
-
Moskovitch, R.1
Shahar, Y.2
-
18
-
-
80052392674
-
Robust mining of time intervals with semi-interval partial order patterns
-
Columbus, OH on April 29 to May 1, 2010
-
Moerchen F, Fradkin D. Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of SIAM Data Mining. Columbus, OH on April 29 to May 1, 2010, 2010.
-
(2010)
Proceedings of SIAM Data Mining
-
-
Moerchen, F.1
Fradkin, D.2
-
19
-
-
84873197261
-
Classification of ICU patients via temporal abstraction and temporal patterns mining
-
(IDAMAP 2009) Workshop, Verona, Italy
-
Moskovitch R, Peek N, Shahar Y. Classification of ICU patients via temporal abstraction and temporal patterns mining. Notes of the Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP 2009) Workshop, Verona, Italy; 2009:35-40.
-
(2009)
Notes of the Intelligent Data Analysis in Medicine and Pharmacology
, pp. 35-40
-
-
Moskovitch, R.1
Peek, N.2
Shahar, Y.3
-
20
-
-
84882789532
-
Temporal reasoning over clinical text: the state of the art
-
Sun W, Rumshisky A, Uzuner O. Temporal reasoning over clinical text: the state of the art. J Am Med Inform Assoc. 2013;20:814-819.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, pp. 814-819
-
-
Sun, W.1
Rumshisky, A.2
Uzuner, O.3
-
21
-
-
79953776666
-
Mayo clinic smoking status classification system: extensions and improvements
-
Sohn S, Savova GK. Mayo clinic smoking status classification system: extensions and improvements. AMIA Annu Symp Proc. 2009;2009: 619-623.
-
(2009)
AMIA Annu Symp Proc.
, vol.2009
, pp. 619-623
-
-
Sohn, S.1
Savova, G.K.2
-
22
-
-
33847640080
-
Temporal reasoning with medical data-A review with emphasis on medical natural language processing
-
Zhou L, Hripcsak G. Temporal reasoning with medical data-A review with emphasis on medical natural language processing. J Biomed Inform. 2007; 40:183-202.
-
(2007)
J Biomed Inform.
, vol.40
, pp. 183-202
-
-
Zhou, L.1
Hripcsak, G.2
-
23
-
-
60549091164
-
Using empirical semantic correlation to interpret temporal assertions in clinical texts
-
Hripcsak G, Elhadad N, Chen C, et al. Using empirical semantic correlation to interpret temporal assertions in clinical texts. J Am Med Inform Assoc. 2009;16:220-227.
-
(2009)
J Am Med Inform Assoc.
, vol.16
, pp. 220-227
-
-
Hripcsak, G.1
Elhadad, N.2
Chen, C.3
-
24
-
-
33744823526
-
A Bayesian dynamic model for influenza surveillance
-
Sebastiani P, Mandl KD, Szolovits P, et al. A Bayesian dynamic model for influenza surveillance. Stat Med. 2006;25(11):1803-1816.
-
(2006)
Stat Med.
, vol.25
, Issue.11
, pp. 1803-1816
-
-
Sebastiani, P.1
Mandl, K.D.2
Szolovits, P.3
-
25
-
-
80053162393
-
Irregular-time Bayesian networks
-
(UAI-2010), Catalina Island, CA, USA
-
Ramati M, Shahar Y. Irregular-time Bayesian networks. In: Proceedings of the 26th July 8-11, 2010 Conference on Uncertainty in Artificial Intelligence (UAI-2010), Catalina Island, CA, USA, 2010.
-
(2010)
Proceedings of the 26th July 8-11, 2010 Conference on Uncertainty in Artificial Intelligence
-
-
Ramati, M.1
Shahar, Y.2
-
27
-
-
84890520376
-
Correlating electronic health record concepts with healthcare process events
-
Hripcsak G, Albers DJ. Correlating electronic health record concepts with healthcare process events. J Am Med Inform Assoc. 2013;20:e311-e318.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, pp. e311-e318
-
-
Hripcsak, G.1
Albers, D.J.2
-
28
-
-
84871854103
-
Next-generation phenotyping of electronic health records
-
Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013;20:117-121
-
(2013)
J Am Med Inform Assoc.
, vol.20
, pp. 117-121
-
-
Hripcsak, G.1
Albers, D.J.2
-
29
-
-
84890479944
-
Electronic health records-driven phenotyping: challenges, recent advances, and perspectives
-
Pathak J1, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc. 2013;20(e2):e206-e211.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, Issue.E2
, pp. e206-e211
-
-
Pathak, J.I.1
Kho, A.N.2
Denny, J.C.3
-
30
-
-
58149474394
-
Reconstruction of a system's dynamics from short trajectories
-
Komalapriya C, Thiel M, Ramano MC, et al. Reconstruction of a system's dynamics from short trajectories. Phys Rev E. 2008;78:066217.
-
(2008)
Phys Rev E.
, vol.78
, pp. 066217
-
-
Komalapriya, C.1
Thiel, M.2
Ramano, M.C.3
-
31
-
-
84859360988
-
Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations
-
Albers DJ, Hripcsak G. Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations. Chaos. 2012;22:013111.
-
(2012)
Chaos.
, vol.22
, pp. 013111
-
-
Albers, D.J.1
Hripcsak, G.2
-
34
-
-
74249085955
-
A statistical dynamics approach to the study of human health data: resolving population scale diurnal variation in laboratory data
-
Albers DJ, Hripcsak G. A statistical dynamics approach to the study of human health data: resolving population scale diurnal variation in laboratory data. Phys Lett A. 2010;374:1159-1164.
-
(2010)
Phys Lett A.
, vol.374
, pp. 1159-1164
-
-
Albers, D.J.1
Hripcsak, G.2
-
35
-
-
84871338571
-
Population physiology: leveraging electronic health record data to understand human endocrine dynamics
-
Albers DJ, Hripcsak G, Schmidt M. Population physiology: leveraging electronic health record data to understand human endocrine dynamics. PLOS One 2012;7(12):e48058.
-
(2012)
PLOS One
, vol.7
, Issue.12
, pp. e48058
-
-
Albers, D.J.1
Hripcsak, G.2
Schmidt, M.3
-
36
-
-
84903172946
-
Dynamical phenotyping: using temporal analysis of clinically collected physiologic data to stratify populations
-
Albers DJ, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical phenotyping: using temporal analysis of clinically collected physiologic data to stratify populations. PLOS One 2014;9:e96443.
-
(2014)
PLOS One
, vol.9
, pp. e96443
-
-
Albers, D.J.1
Elhadad, N.2
Tabak, E.3
Perotte, A.4
Hripcsak, G.5
-
41
-
-
84959875858
-
Modeling clinical time series using Gaussian process sequences
-
SIAM
-
Hauskrecht M, Liu Z, Wu L. Modeling clinical time series using Gaussian process sequences. In: SDM. SIAM 2013:623-631.
-
(2013)
SDM
, pp. 623-631
-
-
Hauskrecht, M.1
Liu, Z.2
Wu, L.3
-
42
-
-
84901229950
-
Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule
-
Accessed January 11, 2014
-
Office for Civil Rights, Department of Health and Human Services. Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/De-identification/guidance.html Accessed January 11, 2014.
-
-
-
-
43
-
-
84860142886
-
Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series
-
Albers DJ, Hripcsak G. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series. Chaos, Solitions, Fract. 2012;45;853-60.
-
(2012)
Chaos, Solitions, Fract.
, vol.45
, pp. 853-860
-
-
Albers, D.J.1
Hripcsak, G.2
-
44
-
-
84902264392
-
Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome
-
Claassen J, Albers D, Schmidt JM, et al. Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 2014; 75:771-781.
-
(2014)
Ann Neurol.
, vol.75
, pp. 771-781
-
-
Claassen, J.1
Albers, D.2
Schmidt, J.M.3
|