-
1
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, no. 11, pp. 2399-2434, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, Issue.11
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
2
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. Conf. Comput. Learn. Theory, 1998, pp. 92-100.
-
(1998)
Proc. Conf. Comput. Learn. Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
3
-
-
85027924713
-
Large scale spectral clustering with landmark-based representation
-
Aug.
-
D. Cai and X. Chen, "Large scale spectral clustering with landmark-based representation," IEEE Trans. Cybern., vol. 45, no. 8, pp. 1669-1680, Aug. 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.8
, pp. 1669-1680
-
-
Cai, D.1
Chen, X.2
-
4
-
-
0029195475
-
On the exponential value of labeled samples
-
V. Castelli and T. M. Cover, "On the exponential value of labeled samples," Pattern Recog. Lett., vol. 16, no. 1, pp. 105-111, 1995.
-
(1995)
Pattern Recog. Lett.
, vol.16
, Issue.1
, pp. 105-111
-
-
Castelli, V.1
Cover, T.M.2
-
5
-
-
84876103265
-
Laplacian embedded regression for scalable manifold regularization
-
Jun.
-
L. Chen, I. W. Tsang, and D. Xu, "Laplacian embedded regression for scalable manifold regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 902-915, Jun. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.6
, pp. 902-915
-
-
Chen, L.1
Tsang, I.W.2
Xu, D.3
-
6
-
-
77949722130
-
Learning with l1-graph for image analysis
-
Apr.
-
B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang, "Learning with l1-graph for image analysis," IEEE Trans. Image Process., vol. 19, no. 4, pp. 858-866, Apr. 2010.
-
(2010)
IEEE Trans. Image Process
, vol.19
, Issue.4
, pp. 858-866
-
-
Cheng, B.1
Yang, J.2
Yan, S.3
Fu, Y.4
Huang, T.S.5
-
7
-
-
84898781089
-
Visual reranking through weakly supervised multi-graph learning
-
C. Deng, R. Ji, W. Liu, D. Tao, and X. Gao, "Visual reranking through weakly supervised multi-graph learning," in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 2600-2607.
-
(2013)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 2600-2607
-
-
Deng, C.1
Ji, R.2
Liu, W.3
Tao, D.4
Gao, X.5
-
8
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, "Liblinear: A library for large linear classification," J. Mach. Learn. Res., vol. 9, no. 9, pp. 1871-1874, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, Issue.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
9
-
-
77955655063
-
Semi-supervised learning in gigantic image collections
-
R. Fergus, Y. Weiss, and A. Torralba, "Semi-supervised learning in gigantic image collections," in Proc. Conf. Advances Neural Inf. Proc. Syst., 2009, pp. 522-530.
-
(2009)
Proc. Conf. Advances Neural Inf. Proc. Syst.
, pp. 522-530
-
-
Fergus, R.1
Weiss, Y.2
Torralba, A.3
-
10
-
-
84897580648
-
Graph matching and learning in pattern recognition in the last 10 years
-
P. Foggia, G. Percannella, and M. Vento, "Graph matching and learning in pattern recognition in the last 10 years," Int. J. Pattern Recog. Artif. Intell., vol. 28, no. 1, pp. 178-215, 2014.
-
(2014)
Int. J. Pattern Recog. Artif. Intell.
, vol.28
, Issue.1
, pp. 178-215
-
-
Foggia, P.1
Percannella, G.2
Vento, M.3
-
11
-
-
0026120634
-
Letter recognition using holland-style adaptive classifiers
-
P. W. Frey and D. J. Slate, "Letter recognition using holland-style adaptive classifiers," Mach. Learn., vol. 6, no. 2, pp. 161-182, 1991.
-
(1991)
Mach. Learn
, vol.6
, Issue.2
, pp. 161-182
-
-
Frey, P.W.1
Slate, D.J.2
-
12
-
-
84959233699
-
Optimal graph learning with partial tags and multiple features for image and video annotation
-
L. Gao, J. Song, F. Nie, Y. Yan, N. Sebe, and H. T. Shen, "Optimal graph learning with partial tags and multiple features for image and video annotation," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 4371-4379.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 4371-4379
-
-
Gao, L.1
Song, J.2
Nie, F.3
Yan, Y.4
Sebe, N.5
Shen, H.T.6
-
13
-
-
77956006653
-
Multimodal semisupervised learning for image classification
-
M. Guillaumin, J. Verbeek, and C. Schmid, "Multimodal semisupervised learning for image classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2010, pp. 902-909.
-
(2010)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 902-909
-
-
Guillaumin, M.1
Verbeek, J.2
Schmid, C.3
-
14
-
-
0003684449
-
-
Berlin, Germany: Springer
-
T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin, Germany: Springer, 2010.
-
(2010)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.J.1
Tibshirani, R.J.2
Friedman, J.H.3
-
15
-
-
85162437125
-
Beyond spectral clustering-tight relaxations of balanced graph cuts
-
M. Hein and S. Setzer, "Beyond spectral clustering-tight relaxations of balanced graph cuts," in Proc. Conf. Advances Neural Inf. Process. Syst., 2011, pp. 2366-2374.
-
(2011)
Proc. Conf. Advances Neural Inf. Process. Syst.
, pp. 2366-2374
-
-
Hein, M.1
Setzer, S.2
-
16
-
-
84919800930
-
A divide-and-conquer solver for kernel support vector machines
-
C.-J. Hsieh, S. Si, and I. S. Dhillon, "A divide-and-conquer solver for kernel support vector machines." in Proc. Int. Conf. Mach. Learn., 2014, pp. 566-574.
-
(2014)
Proc. Int. Conf. Mach. Learn
, pp. 566-574
-
-
Hsieh, C.-J.1
Si, S.2
Dhillon, I.S.3
-
17
-
-
84959245593
-
Learning hypergraph-regularized attribute predictors
-
S. Huang, M. Elhoseiny, A. Elgammal, and D. Yang, "Learning hypergraph-regularized attribute predictors," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 409-417.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 409-417
-
-
Huang, S.1
Elhoseiny, M.2
Elgammal, A.3
Yang, D.4
-
18
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. Int. Conf. Mach. Learn., 1999, pp. 200-209.
-
(1999)
Proc. Int. Conf. Mach. Learn
, pp. 200-209
-
-
Joachims, T.1
-
19
-
-
56449125402
-
Large scale manifold transduction
-
M. Karlen, J. Weston, A. Erkan, and R. Collobert, "Large scale manifold transduction," in Proc. Int. Conf. Mach. Learn., 2008, pp. 448-455.
-
(2008)
Proc. Int. Conf. Mach. Learn
, pp. 448-455
-
-
Karlen, M.1
Weston, J.2
Erkan, A.3
Collobert, R.4
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
22
-
-
77956549641
-
Making large-scale nyström approximation possible
-
M. Li, J. T.-Y. Kwok, and B. Lü, "Making large-scale nyström approximation possible," in Proc. Int. Conf. Mach. Learn., 2010, pp. 631-638.
-
(2010)
Proc. Int. Conf. Mach. Learn
, pp. 631-638
-
-
Li, M.1
Kwok, J.T.-Y.2
Lü, B.3
-
23
-
-
77956555216
-
Large graph construction for scalable semi-supervised learning
-
W. Liu, J. He, and S.-F. Chang, "Large graph construction for scalable semi-supervised learning," in Proc. Int. Conf. Mach. Learn., 2010, pp. 679-686.
-
(2010)
Proc. Int. Conf. Mach. Learn
, pp. 679-686
-
-
Liu, W.1
He, J.2
Chang, S.-F.3
-
24
-
-
84865425579
-
Robust and scalable graphbased semisupervised learning
-
Sep.
-
W. Liu, J. Wang, and S.-F. Chang, "Robust and scalable graphbased semisupervised learning," Proc. IEEE, vol. 100, no. 9, pp. 2624-2638, Sep. 2012.
-
(2012)
Proc. IEEE
, vol.100
, Issue.9
, pp. 2624-2638
-
-
Liu, W.1
Wang, J.2
Chang, S.-F.3
-
25
-
-
80053456121
-
Hashing with graphs
-
W. Liu, J. Wang, S. Kumar, and S.-F. Chang, "Hashing with graphs," in Proc. Int. Conf. Mach. Learn., 2011, pp. 1-8.
-
(2011)
Proc. Int. Conf. Mach. Learn
, pp. 1-8
-
-
Liu, W.1
Wang, J.2
Kumar, S.3
Chang, S.-F.4
-
28
-
-
79955855934
-
Laplacian support vector machines trained in the primal
-
S. Melacci and M. Belkin, "Laplacian support vector machines trained in the primal," J. Mach. Learn. Res., vol. 12, no. 5, pp. 1149-1184, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.12
, Issue.5
, pp. 1149-1184
-
-
Melacci, S.1
Belkin, M.2
-
29
-
-
84906339516
-
Scalable nearest neighbor algorithms for high dimensional data
-
Nov.
-
M. Muja and D. G. Lowe, "Scalable nearest neighbor algorithms for high dimensional data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11, pp. 2227-2240, Nov. 2014.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.11
, pp. 2227-2240
-
-
Muja, M.1
Lowe, D.G.2
-
30
-
-
84901833048
-
Fast exact search in hamming space with multi-index hashing
-
Jun.
-
M. Norouzi, A. Punjani, and D. J. Fleet, "Fast exact search in hamming space with multi-index hashing," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 6, pp. 1107-1119, Jun. 2014.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.6
, pp. 1107-1119
-
-
Norouzi, M.1
Punjani, A.2
Fleet, D.J.3
-
31
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
32
-
-
84880250285
-
Global linear neighborhoods for efficient label propagation
-
Z. Tian and R. Kuang, "Global linear neighborhoods for efficient label propagation," in Proc. SIAM Int. Conf. Data Mining, 2012, pp. 863-872.
-
(2012)
Proc. SIAM Int. Conf. Data Mining
, pp. 863-872
-
-
Tian, Z.1
Kuang, R.2
-
33
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, no. 1, pp. 363-392, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, Issue.1
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
34
-
-
36648998944
-
Label propagation through linear neighborhoods
-
Jan.
-
F. Wang and C. Zhang, "Label propagation through linear neighborhoods," IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 55-67, Jan. 2008.
-
(2008)
IEEE Trans. Knowl. Data Eng.
, vol.20
, Issue.1
, pp. 55-67
-
-
Wang, F.1
Zhang, C.2
-
35
-
-
84866714838
-
Scalable k-NN graph construction for visual descriptors
-
J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, "Scalable k-NN graph construction for visual descriptors," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012, pp. 1106-1113.
-
(2012)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 1106-1113
-
-
Wang, J.1
Wang, J.2
Zeng, G.3
Tu, Z.4
Gan, R.5
Li, S.6
-
36
-
-
84976348877
-
Scalable semi-supervised learning by efficient anchor graph regularization
-
Jul.
-
M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, "Scalable semi-supervised learning by efficient anchor graph regularization," IEEE Trans. Knowl. Data Eng., vol. 28, no. 7, pp. 1864-1877, Jul. 2016.
-
(2016)
IEEE Trans. Knowl. Data Eng.
, vol.28
, Issue.7
, pp. 1864-1877
-
-
Wang, M.1
Fu, W.2
Hao, S.3
Tao, D.4
Wu, X.5
-
37
-
-
67249090373
-
Unified video annotation via multigraph learning
-
May
-
M. Wang, X.-S. Hua, R. Hong, J. Tang, G.-J. Qi, and Y. Song, "Unified video annotation via multigraph learning," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 5, pp. 733-746, May 2009.
-
(2009)
IEEE Trans. Circuits Syst. Video Technol.
, vol.19
, Issue.5
, pp. 733-746
-
-
Wang, M.1
Hua, X.-S.2
Hong, R.3
Tang, J.4
Qi, G.-J.5
Song, Y.6
-
38
-
-
84916934200
-
EMR: A scalable graph-based ranking model for content-based image retrieval
-
Jan.
-
B. Xu, J. Bu, C. Chen, C. Wang, D. Cai, and X. He, "EMR: A scalable graph-based ranking model for content-based image retrieval," IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 102-114, Jan. 2015.
-
(2015)
IEEE Trans. Knowl. Data Eng.
, vol.27
, Issue.1
, pp. 102-114
-
-
Xu, B.1
Bu, J.2
Chen, C.3
Wang, C.4
Cai, D.5
He, X.6
-
39
-
-
84994626872
-
Zeroshot hashing via transferring supervised knowledge
-
Y. Yang, Y. Luo, W. Chen, F. Shen, J. Shao, and H. T. Shen, "Zeroshot hashing via transferring supervised knowledge," in Proc. ACM Conf. Multimedia, 2016, pp. 1286-1295.
-
(2016)
Proc. ACM Conf. Multimedia
, pp. 1286-1295
-
-
Yang, Y.1
Luo, Y.2
Chen, W.3
Shen, F.4
Shao, J.5
Shen, H.T.6
-
40
-
-
85009747630
-
Robust discrete spectral hashing for large-scale image semantic indexing
-
Dec.
-
Y. Yang, F. Shen, H. T. Shen, H. Li, and X. Li, "Robust discrete spectral hashing for large-scale image semantic indexing," IEEE Trans. Big Data, vol. 1, no. 4, pp. 162-171, Dec. 2015.
-
(2015)
IEEE Trans. Big Data
, vol.1
, Issue.4
, pp. 162-171
-
-
Yang, Y.1
Shen, F.2
Shen, H.T.3
Li, H.4
Li, X.5
-
41
-
-
84897694626
-
Discriminative nonnegative spectral clustering with out-of-sample extension
-
Aug.
-
Y. Yang, Y. Yang, H. T. Shen, Y. Zhang, X. Du, and X. Zhou, "Discriminative nonnegative spectral clustering with out-of-sample extension," IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1760-1771, Aug. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.8
, pp. 1760-1771
-
-
Yang, Y.1
Yang, Y.2
Shen, H.T.3
Zhang, Y.4
Du, X.5
Zhou, X.6
-
42
-
-
84886176482
-
Semi-supervised classification based on subspace sparse representation
-
G. Yu, G. Zhang, Z. Zhang, Z. Yu, and L. Deng, "Semi-supervised classification based on subspace sparse representation," Knowl. Inf. Syst., vol. 43, no. 1, pp. 81-101, 2015.
-
(2015)
Knowl. Inf. Syst.
, vol.43
, Issue.1
, pp. 81-101
-
-
Yu, G.1
Zhang, G.2
Zhang, Z.3
Yu, Z.4
Deng, L.5
-
43
-
-
34250883179
-
Fast sparse matrix multiplication
-
R. Yuster and U. Zwick, "Fast sparse matrix multiplication," ACM Trans. Algorithms, vol. 1, no. 1, pp. 2-13, 2005.
-
(2005)
ACM Trans. Algorithms
, vol.1
, Issue.1
, pp. 2-13
-
-
Yuster, R.1
Zwick, U.2
-
45
-
-
71149121119
-
Prototype vector machine for large scale semi-supervised learning
-
K. Zhang, J. T. Kwok, and B. Parvin, "Prototype vector machine for large scale semi-supervised learning," in Proc. Int. Conf. Mach. Learn., 2009, pp. 1233-1240.
-
(2009)
Proc. Int. Conf. Mach. Learn
, pp. 1233-1240
-
-
Zhang, K.1
Kwok, J.T.2
Parvin, B.3
-
46
-
-
84923874457
-
Scaling up graph-based semi-supervised learning via prototype vector machines
-
Mar.
-
K. Zhang, L. Lan, J. T. Kwok, S. Vucetic, and B. Parvin, "Scaling up graph-based semi-supervised learning via prototype vector machines," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 444-457, Mar. 2015.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.3
, pp. 444-457
-
-
Zhang, K.1
Lan, L.2
Kwok, J.T.3
Vucetic, S.4
Parvin, B.5
-
47
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, "Learning with local and global consistency," in Proc. Conf. Advances Neural Inf. Process. Syst., 2004, pp. 321-328.
-
(2004)
Proc. Conf. Advances Neural Inf. Process. Syst.
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
48
-
-
84864027458
-
Learning with hypergraphs: Clustering, classification, and embedding
-
D. Zhou, J. Huang, and B. Schölkopf, "Learning with hypergraphs: Clustering, classification, and embedding," in Proc. Conf. Advances Neural Inf. Process. Syst., 2006, pp. 1601-1608.
-
(2006)
Proc. Conf. Advances Neural Inf. Process. Syst.
, pp. 1601-1608
-
-
Zhou, D.1
Huang, J.2
Schölkopf, B.3
-
49
-
-
33745456231
-
-
Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530
-
X. Zhu, "Semi-supervised learning literature survey," Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530, 2005.
-
(2005)
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
-
50
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using gaussian fields and harmonic functions," in Proc. Int. Conf. Mach. Learn., 2003, pp. 912-919.
-
(2003)
Proc. Int. Conf. Mach. Learn
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
51
-
-
67650272548
-
Introduction to semi-supervised learning
-
X. Zhu and A. B. Goldberg, "Introduction to semi-supervised learning," Synthesis Lectures Artif. Intell. Mach. Learn., vol. 3, no. 1, pp. 1-130, 2009.
-
(2009)
Synthesis Lectures Artif. Intell. Mach. Learn
, vol.3
, Issue.1
, pp. 1-130
-
-
Zhu, X.1
Goldberg, A.B.2
-
52
-
-
31844439885
-
Nonparametric transforms of graph kernels for semi-supervised learning
-
X. Zhu, J. Kandola, Z. Ghahramani, and J. D. Lafferty, "Nonparametric transforms of graph kernels for semi-supervised learning," in Proc. Conf. Advances Neural Inf. Process. Syst., 2004, pp. 1641-1648.
-
(2004)
Proc. Conf. Advances Neural Inf. Process. Syst.
, pp. 1641-1648
-
-
Zhu, X.1
Kandola, J.2
Ghahramani, Z.3
Lafferty, J.D.4
|