메뉴 건너뛰기




Volumn 36, Issue 6, 2014, Pages 1107-1119

Fast exact search in hamming space with multi-index hashing

Author keywords

Binary codes; Hamming distance; large scale image retrieval; multi index hashing; nearest neighbor search

Indexed keywords

DIGITAL STORAGE; HAMMING DISTANCE; IMAGE RETRIEVAL;

EID: 84901833048     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2013.231     Document Type: Article
Times cited : (159)

References (38)
  • 1
    • 84901846701 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: https://github.com/norouzi/mih/
  • 4
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk, "Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions," Commun. ACM, vol. 51, no. 1, pp. 117-122, 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 6
    • 85162311477 scopus 로고    scopus 로고
    • Picodes: Learning a compact code for novel-category recognition
    • A. Bergamo, L. Torresani, and A. Fitzgibbon, "Picodes: Learning a compact code for novel-category recognition," in Proc. NIPS, vol. 24. 2011.
    • (2011) Proc. NIPS , vol.24
    • Bergamo, A.1    Torresani, L.2    Fitzgibbon, A.3
  • 8
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • Montreal, QC, Canada
    • M. Charikar, "Similarity estimation techniques from rounding algorithms," in Proc. ACM Symp. Theory Computing. Montreal, QC, Canada, 2002.
    • (2002) Proc. ACM Symp. Theory Computing
    • Charikar, M.1
  • 11
    • 80052874105 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes
    • Providence, RI, USA
    • Y. Gong and S. Lazebnik, "Iterative quantization: A procrustean approach to learning binary codes," in Proc. IEEE Conf. Computer Vision Pattern Recognition, Providence, RI, USA, 2011.
    • (2011) Proc. IEEE Conf. Computer Vision Pattern Recognition
    • Gong, Y.1    Lazebnik, S.2
  • 15
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani, "Approximate nearest neighbors: Towards removing the curse of dimensionality," in Proc. ACM Symp. Theory Computing, 1998, pp. 604-613.
    • (1998) Proc. ACM Symp. Theory Computing , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 16
    • 56749104169 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • Berlin, Germany
    • H. Jégou, M. Douze, and C. Schmid, "Hamming embedding and weak geometric consistency for large scale image search," in Proc. European Conf. Computer Vision, vol. 1. Berlin, Germany, pp. 304-317, 2008.
    • (2008) Proc. European Conf. Computer Vision , vol.1 , pp. 304-317
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 17
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • Jan
    • H. Jégou, M. Douze, and C. Schmid, "Product quantization for nearest neighbor search," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 117-128, Jan. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 20
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell, "Learning to hash with binary reconstructive embeddings," in Proc. NIPS, vol. 22. 2009.
    • (2009) Proc. NIPS , vol.22
    • Kulis, B.1    Darrell, T.2
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 23
  • 25
    • 80053457714 scopus 로고    scopus 로고
    • Minimal loss hashing for compact binary codes
    • Bellevue, WA, USA
    • M. Norouzi and D. J. Fleet, "Minimal loss hashing for compact binary codes," in Proc. Int. Conf. Machine Learning, Bellevue, WA, USA, 2011.
    • (2011) Proc. Int. Conf. Machine Learning
    • Norouzi, M.1    Fleet, D.J.2
  • 28
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • DOI 10.1023/A:1011139631724
    • A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," Int. J. Comput. Vision, vol. 42, no. 3, pp. 145-175, 2001. (Pubitemid 32680801)
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 29
    • 79954525255 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shift-invariant kernels
    • M. Raginsky and S. Lazebnik, "Locality-sensitive binary codes from shift-invariant kernels," in Proc. NIPS, vol. 22. 2009.
    • (2009) Proc. NIPS , vol.22
    • Raginsky, M.1    Lazebnik, S.2
  • 34
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • Nov
    • A. Torralba, R. Fergus, and W. Freeman, "80 million tiny images: A large data set for nonparametric object and scene recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 37
    • 77956496400 scopus 로고    scopus 로고
    • Sequential projection learning for hashing with compact codes
    • Haifa, Israel
    • J. Wang, S. Kumar, and S. Chang, "Sequential projection learning for hashing with compact codes," in Proc. Int. Conf. Machine Learning, Haifa, Israel, 2010.
    • (2010) Proc. Int. Conf. Machine Learning
    • Wang, J.1    Kumar, S.2    Chang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.