-
1
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
MIT Press
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14, pages 585-591. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Jun
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neu- ral Computation, 15(6):1373-1396, Jun 2003.
-
(2003)
Neu- Ral Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
84898946656
-
Using manifold stucture for partially labeled classification
-
S. T. S. Becker and K. Obermayer, editors, MIT Press, Cambridge, MA
-
M. Belkin and P. Niyogi. Using manifold stucture for partially labeled classification. In S. T. S. Becker and K. Obermayer, editors, Advances in Neural Informa- Tion Processing Systems 15, pages 929-936. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Informa- Tion Processing Systems
, vol.15
, pp. 929-936
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
34547969350
-
Label propagation and quadratic criterion
-
O. Chapelle, B. Schölkopf, and A. Zien, editors, MIT Press
-
Y. Bengio, O. Delalleau, and N. Le Roux. Label Propagation and Quadratic Criterion. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised Learning, pages 193-216. MIT Press, 2006.
-
(2006)
Semi-Supervised Learning
, pp. 193-216
-
-
Bengio, Y.1
Delalleau, O.2
Roux, N.L.3
-
5
-
-
31844453456
-
Clustering through ranking on manifolds
-
M. Breitenbach and G. Z. Grudic. Clustering through ranking on manifolds. In ICML, pages 73-80, 2005.
-
(2005)
ICML
, pp. 73-80
-
-
Breitenbach, M.1
Grudic, G.Z.2
-
6
-
-
77953177416
-
Sparsity induced similarity measure for label propagation
-
Oct
-
H. Cheng, Z. Liu, and J. Yang. Sparsity induced similarity measure for label propagation. In Computer Vision, 2009 IEEE 12th International Conference on, pages 317-324, Oct. 2009.
-
(2009)
Computer Vision, 2009 IEEE 12th International Conference on
, pp. 317-324
-
-
Cheng, H.1
Liu, Z.2
Yang, J.3
-
8
-
-
2942723846
-
A divisive information theoretic feature clustering algorithm for text classification
-
March
-
I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information theoretic feature clustering algorithm for text classification. Journal of Machine Learning Re- search, 3:1265-1287, March 2003.
-
(2003)
Journal of Machine Learning Re- Search
, vol.3
, pp. 1265-1287
-
-
Dhillon, I.S.1
Mallela, S.2
Kumar, R.3
-
9
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
Jun
-
A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 23(6):643-660, Jun 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intel- Ligence
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.1
Belhumeur, P.2
Kriegman, D.3
-
10
-
-
45749140422
-
Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival
-
FEB 20
-
M. T. Landi et al. Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival. PLOS ONE, 3(2), FEB 20 2008.
-
(2008)
PLOS ONE
, vol.3
, Issue.2
-
-
Landi, M.T.1
-
11
-
-
77956555216
-
Large graph construction for scalable semi-supervised learning
-
W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised learning. In ICML, pages 679-686, 2010.
-
(2010)
ICML
, pp. 679-686
-
-
Liu, W.1
He, J.2
Chang, S.-F.3
-
12
-
-
77956207894
-
Semisupervised sparse metric learning using alternating linearization optimization
-
New York, NY, USA, ACM. ISBN 978-1-4503- 0055-1
-
W. Liu, S. Ma, D. Tao, J. Liu, and P. Liu. Semisupervised sparse metric learning using alternating linearization optimization. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pages 1139-1148, New York, NY, USA, 2010. ACM. ISBN 978-1-4503- 0055-1.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '10
, pp. 1139-1148
-
-
Liu, W.1
Ma, S.2
Tao, D.3
Liu, J.4
Liu, P.5
-
13
-
-
77951158151
-
Non-negative laplacian embedding
-
Dec
-
D. Luo, C. Ding, H. Huang, and T. Li. Non-negative laplacian embedding. In Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on, pages 337-346, Dec. 2009.
-
(2009)
Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on
, pp. 337-346
-
-
Luo, D.1
Ding, C.2
Huang, H.3
Li, T.4
-
14
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Dec 22 2000
-
S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (5500):2323+, Dec 22 2000.
-
Science
, vol.290
, Issue.5500
, pp. 2323
-
-
Roweis, S.1
Saul, L.2
-
16
-
-
34347209095
-
Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme
-
JUN 1
-
L.-J. Su et al. Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC GE- NOMICS, 8, JUN 1 2007.
-
(2007)
BMC GE- NOMICS
, vol.8
-
-
Su, L.-J.1
-
18
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
Jan 31
-
L. van't Veer et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871): 530-536, Jan 31 2002.
-
(2002)
Nature
, vol.415
, Issue.6871
, pp. 530-536
-
-
Van't Veer, L.1
-
20
-
-
84879571292
-
Distance metric learning with application to clustering with side-information
-
S. T. S. Becker and K. Obermayer, editors, MIT Press, Cambridge, MA
-
E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In S. T. S. Becker and K. Obermayer, editors, Advances in Neural Information Pro- cessing Systems 15, pages 505-512. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Pro- Cessing Systems
, vol.15
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
-
22
-
-
78649568913
-
Label propagation algorithm based on non-negative sparse representation
-
K. Li, L. Jia, X. Sun, M. Fei, and G. Irwin, editors, volume 6330 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg
-
N. Yang, Y. Sang, R. He, and X. Wang. Label propagation algorithm based on non-negative sparse representation. In K. Li, L. Jia, X. Sun, M. Fei, and G. Irwin, editors, Life System Modeling and Intelligent Computing, volume 6330 of Lecture Notes in Computer Science, pages 348-357. Springer Berlin/Heidelberg, 2010.
-
(2010)
Life System Modeling and Intelligent Computing
, pp. 348-357
-
-
Yang, N.1
Sang, Y.2
He, R.3
Wang, X.4
-
23
-
-
84899006908
-
Learning with local and global consistency
-
S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press, Cambridge, MA
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Sys- Tems 16. MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Sys- Tems
, vol.16
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
24
-
-
1942484430
-
Semisupervised learning using gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, and J. D. Laérty. Semisupervised learning using gaussian fields and harmonic functions. In ICML, pages 912-919, 2003.
-
(2003)
ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Laérty, J.D.3
|