메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4371-4379

Optimal graph learning with partial tags and multiple features for image and video annotation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; GRAPHIC METHODS; PATTERN RECOGNITION; SUPERVISED LEARNING;

EID: 84959233699     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299066     Document Type: Conference Paper
Times cited : (76)

References (35)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 77949722130 scopus 로고    scopus 로고
    • Learning with l1-graph for image analysis
    • B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang. Learning with l1-graph for image analysis. IEEE TIP, 19(4):858-866, 2010
    • (2010) IEEE TIP , vol.19 , Issue.4 , pp. 858-866
    • Cheng, B.1    Yang, J.2    Yan, S.3    Fu, Y.4    Huang, T.S.5
  • 4
    • 84896993153 scopus 로고    scopus 로고
    • Weakly supervised multi-graph learning for robust image reranking
    • C. Deng, R. Ji, D. Tao, X. Gao, and X. Li. Weakly supervised multi-graph learning for robust image reranking. IEEE TMM, 16(3):785-795, 2014
    • (2014) IEEE TMM , vol.16 , Issue.3 , pp. 785-795
    • Deng, C.1    Ji, R.2    Tao, D.3    Gao, X.4    Li, X.5
  • 5
    • 84884541998 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithm, theory, and applications
    • E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE TPAMI, 35(11):2765-2781, 2013
    • (2013) IEEE TPAMI , vol.35 , Issue.11 , pp. 2765-2781
    • Elhamifar, E.1    Vidal, R.2
  • 6
    • 5044225521 scopus 로고    scopus 로고
    • Multiple bernoulli relevance models for image and video annotation
    • S. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In CVPR, 2004
    • (2004) CVPR
    • Feng, S.1    Manmatha, R.2    Lavrenko, V.3
  • 7
    • 34948906262 scopus 로고    scopus 로고
    • Segmenting motions of different types by unsupervised manifold clustering
    • A. Goh and R. Vidal. Segmenting motions of different types by unsupervised manifold clustering. In CVPR, 2007
    • (2007) CVPR
    • Goh, A.1    Vidal, R.2
  • 8
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV, 2009
    • (2009) ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.J.3    Schmid, C.4
  • 9
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. IEEE TPAMI, 35(1):171-184, 2013
    • (2013) IEEE TPAMI , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 10
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML, 2010
    • (2010) ICML
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 11
    • 84863042818 scopus 로고    scopus 로고
    • Latent low-rank representation for subspace segmentation and feature extraction
    • G. Liu and S. Yan. Latent low-rank representation for subspace segmentation and feature extraction. In ICCV, 2011
    • (2011) ICCV
    • Liu, G.1    Yan, S.2
  • 12
    • 84866669326 scopus 로고    scopus 로고
    • Fixed-rank representation for unsupervised visual learning
    • R. Liu, Z. Lin, F. de la Torre, and Z. Su. Fixed-rank representation for unsupervised visual learning. In CVPR, 2012
    • (2012) CVPR
    • Liu, R.1    Lin, Z.2    De La Torre, F.3    Su, Z.4
  • 13
    • 84865425579 scopus 로고    scopus 로고
    • Robust and scalable graph-based semisupervised learning
    • W. Liu, J. Wang, and S.-F. Chang. Robust and scalable graph-based semisupervised learning. Proceedings of the IEEE, 100(9):2624-2638, 2012
    • (2012) Proceedings of the IEEE , vol.100 , Issue.9 , pp. 2624-2638
    • Liu, W.1    Wang, J.2    Chang, S.-F.3
  • 15
    • 77954086656 scopus 로고    scopus 로고
    • Baselines for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar. Baselines for image annotation. IJCV, 90(1):88-105, 2010
    • (2010) IJCV , vol.90 , Issue.1 , pp. 88-105
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 16
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 17
    • 77953705810 scopus 로고    scopus 로고
    • Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction
    • F. Nie, D. Xu, I. W.-H. Tsang, and C. Zhang. Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction. IEEE TIP, 19(7):1921-1932, 2010
    • (2010) IEEE TIP , vol.19 , Issue.7 , pp. 1921-1932
    • Nie, F.1    Xu, D.2    Tsang, I.W.-H.3    Zhang, C.4
  • 18
    • 84887355692 scopus 로고    scopus 로고
    • Constructing l2-graph for subspace learning and segmentation
    • abs/1209. 0841
    • X. Peng, L. Zhang, and Z. Yi. Constructing l2-graph for subspace learning and segmentation. CoRR, abs/1209. 0841, 2012
    • (2012) CoRR
    • Peng, X.1    Zhang, L.2    Yi, Z.3
  • 19
    • 77956034602 scopus 로고    scopus 로고
    • Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories
    • S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE TPAMI, 32(10):1832-1845, 2010
    • (2010) IEEE TPAMI , vol.32 , Issue.10 , pp. 1832-1845
    • Rao, S.1    Tron, R.2    Vidal, R.3    Ma, Y.4
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 21
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-supervised learning. In ICML, 2005
    • (2005) ICML
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 22
    • 84455173075 scopus 로고    scopus 로고
    • Multiple feature hashing for real-time large scale near-duplicate video retrieval
    • J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong. Multiple feature hashing for real-time large scale near-duplicate video retrieval. In ACM Multimedia, 2011
    • (2011) ACM Multimedia
    • Song, J.1    Yang, Y.2    Huang, Z.3    Shen, H.T.4    Hong, R.5
  • 23
    • 84903137922 scopus 로고    scopus 로고
    • Robust hashing with local models for approximate similarity search
    • J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang. Robust hashing with local models for approximate similarity search. IEEE Trans. Cybernetics, 44(7):1225-1236, 2014
    • (2014) IEEE Trans. Cybernetics , vol.44 , Issue.7 , pp. 1225-1236
    • Song, J.1    Yang, Y.2    Li, X.3    Huang, Z.4    Yang, Y.5
  • 24
    • 84880548516 scopus 로고    scopus 로고
    • Intermedia hashing for large-scale retrieval from heterogeneous data sources
    • J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen. Intermedia hashing for large-scale retrieval from heterogeneous data sources. In SIGMOD, 2013
    • (2013) SIGMOD
    • Song, J.1    Yang, Y.2    Yang, Y.3    Huang, Z.4    Shen, H.T.5
  • 25
    • 79952402835 scopus 로고    scopus 로고
    • Image annotation by knn-sparse graph-based label propagation over noisily tagged web images
    • J. Tang, R. Hong, S. Yan, T.-S. Chua, G.-J. Qi, and R. Jain. Image annotation by knn-sparse graph-based label propagation over noisily tagged web images. ACM TIST, 2(2):14, 2011
    • (2011) ACM TIST , vol.2 , Issue.2 , pp. 14
    • Tang, J.1    Hong, R.2    Yan, S.3    Chua, T.-S.4    Qi, G.-J.5    Jain, R.6
  • 26
    • 85032760331 scopus 로고    scopus 로고
    • Subspace clustering
    • R. Vidal. Subspace clustering. IEEE Signal Process. Mag., 28(2):52-68, 2011
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.2 , pp. 52-68
    • Vidal, R.1
  • 27
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • F. Wang and C. Zhang. Label propagation through linear neighborhoods. IEEE TKDE, 20(1):55-67, 2008
    • (2008) IEEE TKDE , vol.20 , Issue.1 , pp. 55-67
    • Wang, F.1    Zhang, C.2
  • 28
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • J. Wang, T. Jebara, and S.-F. Chang. Graph transduction via alternating minimization. In ICML, 2008
    • (2008) ICML
    • Wang, J.1    Jebara, T.2    Chang, S.-F.3
  • 30
    • 84898794231 scopus 로고    scopus 로고
    • No matter where you are: Flexible graph-guided multi-task learning for multi-view head pose classification under target motion
    • Y. Yan, E. Ricci, S. Ramanathan, O. Lanz, and N. Sebe. No matter where you are: Flexible graph-guided multi-task learning for multi-view head pose classification under target motion. In ICCV, pages 1177-1184, 2013
    • (2013) ICCV , pp. 1177-1184
    • Yan, Y.1    Ricci, E.2    Ramanathan, S.3    Lanz, O.4    Sebe, N.5
  • 31
    • 84913555064 scopus 로고    scopus 로고
    • Multitask linear discriminant analysis for view invariant action recognition
    • Y. Yan, E. Ricci, R. Subramanian, G. Liu, and N. Sebe. Multitask linear discriminant analysis for view invariant action recognition. IEEE TIP, 23(12):5599-5611, 2014
    • (2014) IEEE TIP , vol.23 , Issue.12 , pp. 5599-5611
    • Yan, Y.1    Ricci, E.2    Subramanian, R.3    Liu, G.4    Sebe, N.5
  • 33
    • 80051548569 scopus 로고    scopus 로고
    • Semisupervised generalized discriminant analysis
    • Y. Zhang and D.-Y. Yeung. Semisupervised generalized discriminant analysis. IEEE TNN, 22(8):1207-1217, 2011
    • (2011) IEEE TNN , vol.22 , Issue.8 , pp. 1207-1217
    • Zhang, Y.1    Yeung, D.-Y.2
  • 35
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.