메뉴 건너뛰기




Volumn , Issue , 2017, Pages 695-704

Enhancing feature selection using word embeddings: The case of flu surveillance

Author keywords

Computational health; Feature selection; Gaussian processes; Influenza like illness; Regularised regression; Search query logs; Syndromic surveillance; User generated content; Word embeddings

Indexed keywords

CLASSIFICATION (OF INFORMATION); DISEASES; INFORMATION RETRIEVAL; MONITORING; ONLINE SYSTEMS; SEMANTICS; SOCIAL NETWORKING (ONLINE);

EID: 85018417855     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3038912.3052622     Document Type: Conference Paper
Times cited : (60)

References (63)
  • 1
    • 85122005087 scopus 로고    scopus 로고
    • INESC-ID: A Regression Model for Large Scale Twitter Sentiment Lexicon Induction
    • S. Amir, R. Astudillo, W. Ling, et al. INESC-ID: A Regression Model for Large Scale Twitter Sentiment Lexicon Induction. In Proc. of SemEval’15, pages 613–618, 2015.
    • (2015) Proc. of SemEval’15 , pp. 613-618
    • Amir, S.1    Astudillo, R.2    Ling, W.3
  • 2
    • 80053290412 scopus 로고    scopus 로고
    • Twitter Catches The Flu: Detecting Influenza Epidemics using Twitter
    • E. Aramaki, S. Maskawa, and M. Morita. Twitter Catches The Flu: Detecting Influenza Epidemics using Twitter. In Proc. of EMNLP’11, pages 1568–1576, 2011.
    • (2011) Proc. of EMNLP’11 , pp. 1568-1576
    • Aramaki, E.1    Maskawa, S.2    Morita, M.3
  • 3
    • 84940037120 scopus 로고    scopus 로고
    • Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data
    • P. Barberá. Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data. Polit. Anal., 23(1):76–91, 2014.
    • (2014) Polit. Anal. , vol.23 , Issue.1 , pp. 76-91
    • Barberá, P.1
  • 5
    • 84944076161 scopus 로고    scopus 로고
    • Non-Linear Text Regression with a Deep Convolutional Neural Network
    • Z. Bitvai and T. Cohn. Non-Linear Text Regression with a Deep Convolutional Neural Network. In Proc. of ACL’15, pages 180–185, 2015.
    • (2015) Proc. of ACL’15 , pp. 180-185
    • Bitvai, Z.1    Cohn, T.2
  • 6
    • 84944130200 scopus 로고    scopus 로고
    • Predicting Peer-to-Peer Loan Rates Using Bayesian Non-Linear Regression
    • Z. Bitvai and T. Cohn. Predicting Peer-to-Peer Loan Rates Using Bayesian Non-Linear Regression. In Proc. of AAAI’15, pages 2203–2209, 2015.
    • (2015) Proc. of AAAI’15 , pp. 2203-2209
    • Bitvai, Z.1    Cohn, T.2
  • 7
    • 79953102821 scopus 로고    scopus 로고
    • Twitter mood predicts the stock market
    • J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. J. Comput. Sci., 2(1):1–8, 2011.
    • (2011) J. Comput. Sci. , vol.2 , Issue.1 , pp. 1-8
    • Bollen, J.1    Mao, H.2    Zeng, X.3
  • 8
    • 66249102261 scopus 로고    scopus 로고
    • Digital Disease Detection — Harnessing the Web for Public Health Surveillance
    • J. S. Brownstein, C. C. Freifeld, and L. C. Madoff. Digital Disease Detection — Harnessing the Web for Public Health Surveillance. N. Engl. J. Med., 360(21):2153–2157, 2009.
    • (2009) N. Engl. J. Med. , vol.360 , Issue.21 , pp. 2153-2157
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 9
    • 80555140070 scopus 로고    scopus 로고
    • Convergence Rates of Efficient Global Optimization Algorithms
    • A. D. Bull. Convergence Rates of Efficient Global Optimization Algorithms. J. Mach. Learn. Res., 12:2879–2904, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2879-2904
    • Bull, A.D.1
  • 10
    • 84862835806 scopus 로고    scopus 로고
    • Predicting the Present with Google Trends
    • H. Choi and H. Varian. Predicting the Present with Google Trends. Economic Record, 88:2–9, 2012.
    • (2012) Economic Record , vol.88 , pp. 2-9
    • Choi, H.1    Varian, H.2
  • 13
    • 84905714139 scopus 로고    scopus 로고
    • Modelling Annotator Bias with Multi-task Gaussian Processes: An Application to Machine Translation Quality Estimation
    • T. Cohn and L. Specia. Modelling Annotator Bias with Multi-task Gaussian Processes: An Application to Machine Translation Quality Estimation. In Proc. of ACL’13, pages 32–42, 2013.
    • (2013) Proc. of ACL’13 , pp. 32-42
    • Cohn, T.1    Specia, L.2
  • 14
    • 84883111635 scopus 로고    scopus 로고
    • OMG U got flu? Analysis of shared health messages for bio-surveillance
    • N. Collier, N. T. Son, and N. M. Nguyen. OMG U got flu? Analysis of shared health messages for bio-surveillance. J. Biomed. Semant., 2(5):1–10, 2011.
    • (2011) J. Biomed. Semant. , vol.2 , Issue.5 , pp. 1-10
    • Collier, N.1    Son, N.T.2    Nguyen, N.M.3
  • 15
    • 79956040653 scopus 로고    scopus 로고
    • Towards Detecting Influenza Epidemics by Analyzing Twitter Messages
    • A. Culotta. Towards Detecting Influenza Epidemics by Analyzing Twitter Messages. In Proc. of the Workshop on Social Media Analytics, pages 115–122, 2010.
    • (2010) Proc. of The Workshop on Social Media Analytics , pp. 115-122
    • Culotta, A.1
  • 16
    • 84874751668 scopus 로고    scopus 로고
    • Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages
    • A. Culotta. Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages. Lang. Resour. Eval., 47(1):217–238, 2013.
    • (2013) Lang. Resour. Eval. , vol.47 , Issue.1 , pp. 217-238
    • Culotta, A.1
  • 20
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • J. Ginsberg, M. H. Mohebbi, R. S. Patel, et al. Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012–1014, 2009.
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3
  • 22
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res., 3:1157–1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 24
    • 84995444930 scopus 로고    scopus 로고
    • Online social integration is associated with reduced mortality risk
    • W. R. Hobbs, M. Burke, N. A. Christakis, and J. H. Fowler. Online social integration is associated with reduced mortality risk. Proc. Natl. Acad. Sci. U.S.A., 113(46):12980–12984, 2016.
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , Issue.46 , pp. 12980-12984
    • Hobbs, W.R.1    Burke, M.2    Christakis, N.A.3    Fowler, J.H.4
  • 25
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12:55–67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 26
    • 84943803518 scopus 로고    scopus 로고
    • Deep Unordered Composition Rivals Syntactic Methods for Text Classification
    • M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep Unordered Composition Rivals Syntactic Methods for Text Classification. In Proc. of ACL’15, pages 1681–1691, 2015.
    • (2015) Proc. of ACL’15 , pp. 1681-1691
    • Iyyer, M.1    Manjunatha, V.2    Boyd-Graber, J.3    Daumé, H.4
  • 27
    • 80054947632 scopus 로고    scopus 로고
    • Movie Reviews and Revenues: An Experiment in Text Regression
    • M. Joshi, D. Das, K. Gimpel, and N. A. Smith. Movie Reviews and Revenues: An Experiment in Text Regression. In Proc. of NAACL’10, pages 293–296, 2010.
    • (2010) Proc. of NAACL’10 , pp. 293-296
    • Joshi, M.1    Das, D.2    Gimpel, K.3    Smith, N.A.4
  • 28
    • 84902602980 scopus 로고    scopus 로고
    • Experimental evidence of massive-scale emotional contagion through social networks
    • A. D. I. Kramer, J. E. Guillory, and J. T. Hancock. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. U.S.A., 111(24):8788–8790, 2014.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , Issue.24 , pp. 8788-8790
    • Kramer, A.D.I.1    Guillory, J.E.2    Hancock, J.T.3
  • 29
    • 84923276281 scopus 로고    scopus 로고
    • Separating Fact from Fear: Tracking Flu Infections on Twitter
    • A. Lamb, M. J. Paul, and M. Dredze. Separating Fact from Fear: Tracking Flu Infections on Twitter. In Proc. of NAACL’13, pages 789–795, 2013.
    • (2013) Proc. of NAACL’13 , pp. 789-795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 31
    • 84962589040 scopus 로고    scopus 로고
    • Inferring the Socioeconomic Status of Social Media Users based on Behaviour and Language
    • V. Lampos, N. Aletras, J. K. Geyti, B. Zou, and I. J. Cox. Inferring the Socioeconomic Status of Social Media Users based on Behaviour and Language. In Proc. of ECIR’16, pages 689–695, 2016.
    • (2016) Proc. of ECIR’16 , pp. 689-695
    • Lampos, V.1    Aletras, N.2    Geyti, J.K.3    Zou, B.4    Cox, I.J.5
  • 34
    • 84867410703 scopus 로고    scopus 로고
    • Nowcasting Events from the Social Web with Statistical Learning
    • V. Lampos and N. Cristianini. Nowcasting Events from the Social Web with Statistical Learning. ACM Trans. Intell. Syst. Technol., 3(4):1–22, 2012.
    • (2012) ACM Trans. Intell. Syst. Technol. , vol.3 , Issue.4 , pp. 1-22
    • Lampos, V.1    Cristianini, N.2
  • 35
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenza-like illness rates using search query logs
    • V. Lampos, A. C. Miller, S. Crossan, and C. Stefansen. Advances in nowcasting influenza-like illness rates using search query logs. Sci. Rep., 5(12760), 2015.
    • (2015) Sci. Rep. , vol.5 , pp. 12760
    • Lampos, V.1    Miller, A.C.2    Crossan, S.3    Stefansen, C.4
  • 36
    • 84907317085 scopus 로고    scopus 로고
    • A user-centric model of voting intention from Social Media
    • V. Lampos, D. Preotiuc-Pietro, and T. Cohn. A user-centric model of voting intention from Social Media. In Proc. of ACL’13, pages 993–1003, 2013.
    • (2013) Proc. of ACL’13 , pp. 993-1003
    • Lampos, V.1    Preotiuc-Pietro, D.2    Cohn, T.3
  • 37
    • 84939572831 scopus 로고    scopus 로고
    • Assessing the impact of a health intervention via user-generated Internet content
    • V. Lampos, E. Yom-Tov, R. Pebody, and I. J. Cox. Assessing the impact of a health intervention via user-generated Internet content. Data Min. Knowl. Discov., 29(5):1434–1457, 2015.
    • (2015) Data Min. Knowl. Discov. , vol.29 , Issue.5 , pp. 1434-1457
    • Lampos, V.1    Yom-Tov, E.2    Pebody, R.3    Cox, I.J.4
  • 38
    • 84896056107 scopus 로고    scopus 로고
    • The Parable of Google Flu: Traps in Big Data Analysis
    • D. Lazer, R. Kennedy, G. King, and A. Vespignani. The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(6176):1203–1205, 2014.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 39
    • 84906924508 scopus 로고    scopus 로고
    • Dependency-Based Word Embeddings
    • O. Levy and Y. Goldberg. Dependency-Based Word Embeddings. In Proc. of ACL’14, pages 302–308, 2014.
    • (2014) Proc. of ACL’14 , pp. 302-308
    • Levy, O.1    Goldberg, Y.2
  • 40
    • 84943788934 scopus 로고    scopus 로고
    • Linguistic Regularities in Sparse and Explicit Word Representations
    • O. Levy and Y. Goldberg. Linguistic Regularities in Sparse and Explicit Word Representations. In Proc. of CoNLL’14, pages 171–180, 2014.
    • (2014) Proc. of CoNLL’14 , pp. 171-180
    • Levy, O.1    Goldberg, Y.2
  • 41
    • 84943775110 scopus 로고    scopus 로고
    • Improving Distributional Similarity with Lessons Learned from Word Embeddings
    • O. Levy, Y. Goldberg, and I. Dagan. Improving Distributional Similarity with Lessons Learned from Word Embeddings. Trans. Assoc. Comput. Linguist., 3:211–225, 2015.
    • (2015) Trans. Assoc. Comput. Linguist. , vol.3 , pp. 211-225
    • Levy, O.1    Goldberg, Y.2    Dagan, I.3
  • 44
    • 84898956512 scopus 로고    scopus 로고
    • Distributed Representations of Words and Phrases and their Compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed Representations of Words and Phrases and their Compositionality. In Advances in NIPS 26, pages 3111–3119, 2013.
    • (2013) Advances in NIPS , vol.26 , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 45
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales
    • D. R. Olson, K. J. Konty, M. Paladini, et al. Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales. PLoS Comput. Biol., 9(10), 10 2013.
    • (2013) PLoS Comput. Biol. , vol.9 , Issue.10 , pp. 10
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3
  • 46
    • 84919651291 scopus 로고    scopus 로고
    • Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters
    • O. Owoputi, B. O’Connor, C. Dyer, et al. Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters. In Proc. of NAACL’13, pages 380–390, 2013.
    • (2013) Proc. of NAACL’13 , pp. 380-390
    • Owoputi, O.1    O’Connor, B.2    Dyer, C.3
  • 47
    • 84859892286 scopus 로고    scopus 로고
    • Weakly-Supervised Acquisition of Open-Domain Classes and Class Attributes from Web Documents and Query Logs
    • M. Paşca and B. Van Durme. Weakly-Supervised Acquisition of Open-Domain Classes and Class Attributes from Web Documents and Query Logs. In Proc. of ACL’08, pages 19–27, 2008.
    • (2008) Proc. of ACL’08 , pp. 19-27
    • Paşca, M.1    Van Durme, B.2
  • 48
    • 84929400852 scopus 로고    scopus 로고
    • Automatic personality assessment through social media language
    • G. Park, H. A. Schwartz, J. C. Eichstaedt, et al. Automatic personality assessment through social media language. J. Pers. Soc. Psychol., 108(6):934–952, 2015.
    • (2015) J. Pers. Soc. Psychol. , vol.108 , Issue.6 , pp. 934-952
    • Park, G.1    Schwartz, H.A.2    Eichstaedt, J.C.3
  • 49
    • 85085133306 scopus 로고    scopus 로고
    • You Are What You Tweet: Analyzing Twitter for Public Health
    • M. J. Paul and M. Dredze. You Are What You Tweet: Analyzing Twitter for Public Health. In Proc. of ICWSM’11, pages 265–272, 2011.
    • (2011) Proc. of ICWSM’11 , pp. 265-272
    • Paul, M.J.1    Dredze, M.2
  • 51
    • 84943802434 scopus 로고    scopus 로고
    • An analysis of the user occupational class through Twitter content
    • D. Preotiuc-Pietro, V. Lampos, and N. Aletras. An analysis of the user occupational class through Twitter content. In Proc. of ACL’15, pages 1754–1764, 2015.
    • (2015) Proc. of ACL’15 , pp. 1754-1764
    • Preotiuc-Pietro, D.1    Lampos, V.2    Aletras, N.3
  • 52
    • 84947460277 scopus 로고    scopus 로고
    • Studying User Income through Language, Behaviour and Affect in Social Media
    • D. Preotiuc-Pietro, S. Volkova, V. Lampos, Y. Bachrach, and N. Aletras. Studying User Income through Language, Behaviour and Affect in Social Media. PLoS ONE, 10(9):e0138717, 2015.
    • (2015) PLoS ONE , vol.10 , Issue.9 , pp. e0138717
    • Preotiuc-Pietro, D.1    Volkova, S.2    Lampos, V.3    Bachrach, Y.4    Aletras, N.5
  • 55
    • 84884541833 scopus 로고    scopus 로고
    • Personality, gender, and age in the language of social media: The Open-Vocabulary approach
    • H. A. Schwartz, J. C. Eichstaedt, M. L. Kern, et al. Personality, gender, and age in the language of social media: The Open-Vocabulary approach. PLoS ONE, 8(9):e73791, 2013.
    • (2013) PLoS ONE , vol.8 , Issue.9 , pp. e73791
    • Schwartz, H.A.1    Eichstaedt, J.C.2    Kern, M.L.3
  • 56
    • 79955757514 scopus 로고    scopus 로고
    • The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. During the Influenza A H1N1 Pandemic
    • A. Signorini, A. M. Segre, and P. M. Polgreen. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic. PLoS ONE, 6(5):e19467, 2011.
    • (2011) PLoS ONE , vol.6 , Issue.5 , pp. e19467
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 57
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • R. Tibshirani. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Series B Stat. Methodol., 58(1):267–288, 1996.
    • (1996) J. R. Stat. Soc. Series B Stat. Methodol. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 58
    • 84988267544 scopus 로고    scopus 로고
    • Financial Keyword Expansion via Continuous Word Vector Representations
    • M.-F. Tsai and C.-J. Wang. Financial Keyword Expansion via Continuous Word Vector Representations. In Proc. of EMNLP’14, pages 1453–1458, 2014.
    • (2014) Proc. of EMNLP’14 , pp. 1453-1458
    • Tsai, M.-F.1    Wang, C.-J.2
  • 59
    • 84947998511 scopus 로고    scopus 로고
    • Accurate estimation of influenza epidemics using Google search data via ARGO
    • S. Yang, M. Santillana, and S. C. Kou. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc. Natl. Acad. Sci. U.S.A., 112(47):14473–14478, 2015.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , Issue.47 , pp. 14473-14478
    • Yang, S.1    Santillana, M.2    Kou, S.C.3
  • 60
    • 84926139013 scopus 로고    scopus 로고
    • Textual Predictors of Bill Survival in Congressional Committees
    • T. Yano, N. A. Smith, and J. D. Wilkerson. Textual Predictors of Bill Survival in Congressional Committees. In Proc. of NAACL’12, pages 793–802, 2012.
    • (2012) Proc. of NAACL’12 , pp. 793-802
    • Yano, T.1    Smith, N.A.2    Wilkerson, J.D.3
  • 61
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541–2563, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 63
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol., 67(2):301–320, 2005.
    • (2005) J. R. Stat. Soc. Series B Stat. Methodol. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.