메뉴 건너뛰기




Volumn 112, Issue 47, 2015, Pages 14473-14478

Accurate estimation of influenza epidemics using Google search data via ARGO

Author keywords

Autoregressive exogenous model; Big data; Digital disease detection; Influenza like illnesses activity real time estimation; Seasonal influenza

Indexed keywords

ACCESS TO INFORMATION; ACCURACY; CONFERENCE PAPER; DISEASE ACTIVITY; EPIDEMIC; INFLUENZA A (H1N1); MEDICAL INFORMATION; PREDICTION; PRIORITY JOURNAL; RETROSPECTIVE STUDY; SEARCH ENGINE; SEASONAL INFLUENZA; SEASONAL VARIATION; TIME SERIES ANALYSIS; HUMAN; INFLUENZA, HUMAN; INTERNET;

EID: 84947998511     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1515373112     Document Type: Article
Times cited : (329)

References (44)
  • 1
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg J, et al. (2009) Detecting influenza epidemics using search engine query data. Nature 457(7232):1012-1014.
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1
  • 3
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from baidu
    • Yuan Q, et al. (2013) Monitoring influenza epidemics in china with search query from baidu. PLoS One 8(5):e64323.
    • (2013) PLoS One , vol.8 , Issue.5
    • Yuan, Q.1
  • 4
  • 5
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenzalike illness in the United States in near real-time
    • McIver DJ, Brownstein JS (2014) Wikipedia usage estimates prevalence of influenzalike illness in the United States in near real-time. PLOS Comput Biol 10(4):e1003581.
    • (2014) PLOS Comput Biol , vol.10 , Issue.4
    • McIver, D.J.1    Brownstein, J.S.2
  • 7
    • 84923285575 scopus 로고    scopus 로고
    • Commentary: Containing the Ebola outbreak - The potential and challenge of mobile network data
    • Wesolowski A, et al. (2014) Commentary: Containing the Ebola outbreak - the potential and challenge of mobile network data. PLOS Curr Outbreaks 10.1371/currents. outbreaks.0177e7fcf52217b8b634376e2f3efc5e.
    • (2014) PLOS Curr Outbreaks
    • Wesolowski, A.1
  • 8
    • 79957985746 scopus 로고    scopus 로고
    • Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance
    • Chan EH, Sahai V, Conrad C, Brownstein JS (2011) Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis 5(5):e1206.
    • (2011) PLoS Negl Trop Dis , vol.5 , Issue.5 , pp. e1206
    • Chan, E.H.1    Sahai, V.2    Conrad, C.3    Brownstein, J.S.4
  • 9
    • 84877731107 scopus 로고    scopus 로고
    • Quantifying trading behavior in financial markets using Google trends
    • Preis T, Moat HS, Stanley HE (2013) Quantifying trading behavior in financial markets using Google trends. Sci Rep 3:1684.
    • (2013) Sci Rep , vol.3 , pp. 1684
    • Preis, T.1    Moat, H.S.2    Stanley, H.E.3
  • 10
    • 79953102821 scopus 로고    scopus 로고
    • Twitter mood predicts the stock market
    • Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1-8.
    • (2011) J Comput Sci , vol.2 , Issue.1 , pp. 1-8
    • Bollen, J.1    Mao, H.2    Zeng, X.3
  • 11
    • 78650651285 scopus 로고    scopus 로고
    • The future of prediction: How Google searches foreshadow housing prices and sales
    • eds Goldfarb A, Greenstein SM, Tucker CE (Univ Chicago Press, Chicago)
    • Wu L, Brynjolfsson E (2015) The future of prediction: How Google searches foreshadow housing prices and sales. Economic Analysis of the Digital Economy, eds Goldfarb A, Greenstein SM, Tucker CE (Univ Chicago Press, Chicago), pp 89-118.
    • (2015) Economic Analysis of the Digital Economy , pp. 89-118
    • Wu, L.1    Brynjolfsson, E.2
  • 12
    • 79951621099 scopus 로고    scopus 로고
    • Google uses searches to track flu's spread
    • November 11, Available at Accessed July 11, 2015
    • Helft M (November 11, 2008) Google uses searches to track flu's spread. NY Times. Available at www.nytimes.com/2008/11/12/technology/internet/12flu.html?-r=0#. Accessed July 11, 2015.
    • (2008) NY Times
    • Helft, M.1
  • 13
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D (2013) When Google got flu wrong. Nature 494(7436):155-156.
    • (2013) Nature , vol.494 , Issue.7436 , pp. 155-156
    • Butler, D.1
  • 14
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook S, Conrad C, Fowlkes AL, Mohebbi MH (2011) Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One 6(8):e23610.
    • (2011) PLoS One , vol.6 , Issue.8
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 15
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: Traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A (2014) Big data. The parable of Google Flu: Traps in big data analysis. Science 343(6176):1203-1205.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 16
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google Flu Trends?
    • Santillana M, Zhang DW, Althouse BM, Ayers JW (2014) What can digital disease detection learn from (an external revision to) Google Flu Trends? Am J Prev Med 47(3):341-347.
    • (2014) Am J Prev Med , vol.47 , Issue.3 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 18
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J, Karspeck A (2012) Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci USA 109(50):20425-20430.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.50 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 19
    • 79957755362 scopus 로고    scopus 로고
    • Improving the evidence base for decision making during a pandemic: The example of 2009 influenza A/H1N1
    • Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC; 2009 H1n1 Surveillance Group (2011) Improving the evidence base for decision making during a pandemic: The example of 2009 influenza A/H1N1. Biosecur Bioterror 9(2):89-115.
    • (2011) Biosecur Bioterror , vol.9 , Issue.2 , pp. 89-115
    • Lipsitch, M.1    Finelli, L.2    Heffernan, R.T.3    Leung, G.M.4    Redd, S.C.5
  • 22
    • 84898028869 scopus 로고    scopus 로고
    • Forecasting peaks of seasonal influenza epidemics
    • Nsoesie E, Mararthe M, Brownstein J (2013) Forecasting peaks of seasonal influenza epidemics. PLoS Curr 5:5.
    • (2013) PLoS Curr , vol.5 , pp. 5
    • Nsoesie, E.1    Mararthe, M.2    Brownstein, J.3
  • 23
    • 77949771773 scopus 로고    scopus 로고
    • Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters
    • Soebiyanto RP, Adimi F, Kiang RK (2010) Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PLoS One 5(3):e9450.
    • (2010) PLoS One , vol.5 , Issue.3 , pp. e9450
    • Soebiyanto, R.P.1    Adimi, F.2    Kiang, R.K.3
  • 24
    • 84890239936 scopus 로고    scopus 로고
    • Real-time influenza forecasts during the 2012-2013 season
    • Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M (2013) Real-time influenza forecasts during the 2012-2013 season. Nat Commun 4(2837):2837.
    • (2013) Nat Commun , vol.4 , Issue.2837 , pp. 2837
    • Shaman, J.1    Karspeck, A.2    Yang, W.3    Tamerius, J.4    Lipsitch, M.5
  • 25
    • 84924132651 scopus 로고    scopus 로고
    • Inference of seasonal and pandemic influenza transmission dynamics
    • Yang W, Lipsitch M, Shaman J (2015) Inference of seasonal and pandemic influenza transmission dynamics. Proc Natl Acad Sci USA 112(9):2723-2728.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.9 , pp. 2723-2728
    • Yang, W.1    Lipsitch, M.2    Shaman, J.3
  • 26
    • 84890683224 scopus 로고    scopus 로고
    • Web-based participatory surveillance of infectious diseases: The Influenzanet participatory surveillance experience
    • Paolotti D, et al. (2014) Web-based participatory surveillance of infectious diseases: The Influenzanet participatory surveillance experience. Clin Microbiol Infect 20(1):17-21.
    • (2014) Clin Microbiol Infect , vol.20 , Issue.1 , pp. 17-21
    • Paolotti, D.1
  • 27
    • 75349096658 scopus 로고    scopus 로고
    • Flutracking: A weekly australian community online survey of influenza-like illness in 2006, 2007 and 2008
    • Dalton C, et al. (2009) Flutracking: A weekly australian community online survey of influenza-like illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep 33(3):316-322.
    • (2009) Commun Dis Intell Q Rep , vol.33 , Issue.3 , pp. 316-322
    • Dalton, C.1
  • 28
    • 84941360461 scopus 로고    scopus 로고
    • Flu near you: Crowdsourced symptom reporting spanning two influenza seasons
    • Smolinski MS, et al. (2015) Flu near you: Crowdsourced symptom reporting spanning two influenza seasons. Am J Public Health 105(10):2124-2130.
    • (2015) Am J Public Health , vol.105 , Issue.10 , pp. 2124-2130
    • Smolinski, M.S.1
  • 29
    • 80052395153 scopus 로고    scopus 로고
    • Prediction of dengue incidence using search query surveillance
    • Althouse BM, Ng YY, Cummings DA (2011) Prediction of dengue incidence using search query surveillance. PLoS Negl Trop Dis 5(8):e1258.
    • (2011) PLoS Negl Trop Dis , vol.5 , Issue.8 , pp. e1258
    • Althouse, B.M.1    Ng, Y.Y.2    Cummings, D.A.3
  • 30
    • 84886738403 scopus 로고    scopus 로고
    • Using search queries for malaria surveillance, Thailand
    • Ocampo AJ, Chunara R, Brownstein JS (2013) Using search queries for malaria surveillance, Thailand. Malar J 12(1):390.
    • (2013) Malar J , vol.12 , Issue.1 , pp. 390
    • Ocampo, A.J.1    Chunara, R.2    Brownstein, J.S.3
  • 31
    • 84861156434 scopus 로고    scopus 로고
    • Optimizing provider recruitment for influenza surveillance networks
    • Scarpino SV, Dimitrov NB, Meyers LA (2012) Optimizing provider recruitment for influenza surveillance networks. PLOS Comput Biol 8(4):e1002472.
    • (2012) PLOS Comput Biol , vol.8 , Issue.4
    • Scarpino, S.V.1    Dimitrov, N.B.2    Meyers, L.A.3
  • 32
    • 84930999810 scopus 로고    scopus 로고
    • Using networks to combine "big data" and traditional surveillance to improve influenza predictions
    • Davidson MW, Haim DA, Radin JM (2015) Using networks to combine "big data" and traditional surveillance to improve influenza predictions. Sci Rep 5:8154.
    • (2015) Sci Rep , vol.5 , pp. 8154
    • Davidson, M.W.1    Haim, D.A.2    Radin, J.M.3
  • 33
    • 34548637081 scopus 로고    scopus 로고
    • Automated time series forecasting for biosurveillance
    • Burkom HS, Murphy SP, Shmueli G (2007) Automated time series forecasting for biosurveillance. Stat Med 26(22):4202-4218.
    • (2007) Stat Med , vol.26 , Issue.22 , pp. 4202-4218
    • Burkom, H.S.1    Murphy, S.P.2    Shmueli, G.3
  • 35
    • 21844495052 scopus 로고
    • The stationary bootstrap
    • Politis DN, Romano JP (1994) The stationary bootstrap. J Am Stat Assoc 89(428): 1303-1313.
    • (1994) J Am Stat Assoc , vol.89 , Issue.428 , pp. 1303-1313
    • Politis, D.N.1    Romano, J.P.2
  • 36
    • 84947913078 scopus 로고    scopus 로고
    • October 13, Washington Post. Available at Accessed April 20, 2015
    • Tsukayama H (October 13, 2014) Google is testing live-video medical advice. Washington Post. Available at https://www.washingtonpost.com/news/the-switch/wp/2014/ 10/13/google-is-testing-live-video-medical-advice/. Accessed April 20, 2015.
    • (2014) Google Is Testing Live-video Medical Advice
    • Tsukayama, H.1
  • 37
    • 84948000926 scopus 로고    scopus 로고
    • How this agency cleverly stopped people from googling their medical symptoms: The right ads at the right time
    • Available at November 10, Accessed April 20, 2015
    • Gianatasio D (November 10, 2014) How this agency cleverly stopped people from googling their medical symptoms: The right ads at the right time. Adweek. Available at www.adweek.com/adfreak/how-agency-cleverly-stopped-people-googling-theirmedical-symptoms-161331. Accessed April 20, 2015.
    • (2014) Adweek
    • Gianatasio, D.1
  • 38
    • 79958102365 scopus 로고    scopus 로고
    • Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004-2009
    • Yang AC, Tsai SJ, Huang NE, Peng CK (2011) Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004-2009. J Affect Disord 132(1-2):179-184.
    • (2011) J Affect Disord , vol.132 , Issue.1-2 , pp. 179-184
    • Yang, A.C.1    Tsai, S.J.2    Huang, N.E.3    Peng, C.K.4
  • 39
    • 84928105227 scopus 로고    scopus 로고
    • Monitoring of non-cigarette tobacco use using Google Trends
    • Cavazos-Rehg PA, et al. (2015) Monitoring of non-cigarette tobacco use using Google Trends. Tob Control 24(3):249-255.
    • (2015) Tob Control , vol.24 , Issue.3 , pp. 249-255
    • Cavazos-Rehg, P.A.1
  • 40
    • 84946026274 scopus 로고    scopus 로고
    • Combining search, social media, and traditional data sources to improve influenza surveillance
    • Santillana M, et al. (2015) Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol 11(10):e1004513.
    • (2015) PLoS Comput Biol , vol.11 , Issue.10
    • Santillana, M.1
  • 41
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenzalike illness rates using search query logs
    • Lampos V, Miller AC, Crossan S, Stefansen C (2015) Advances in nowcasting influenzalike illness rates using search query logs. Sci Rep 5:12760.
    • (2015) Sci Rep , vol.5 , pp. 12760
    • Lampos, V.1    Miller, A.C.2    Crossan, S.3    Stefansen, C.4
  • 42
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc, B 58(1):267-288.
    • (1996) J R Stat Soc, B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 43
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 44
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 67(2):301-320.
    • (2005) J R Stat Soc Series B Stat Methodol , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.