메뉴 건너뛰기




Volumn 8, Issue 3, 2014, Pages 309-316

A systematic review of studies on forecasting the dynamics of influenza outbreaks

Author keywords

Compartmental models; Individual based models; Infectious diseases; Influenza forecasting; Pandemics; Time series models

Indexed keywords

DISEASE SEVERITY; FORECASTING; HUMAN; INFLUENZA; MAGNITUDE ESTIMATION METHOD; MEASUREMENT ACCURACY; MEDLINE; PREDICTION; PRIORITY JOURNAL; REVIEW; SEARCH ENGINE; SYSTEMATIC REVIEW; EPIDEMIC; HEALTH; INFLUENZA, HUMAN; PROCEDURES; SEASON; STATISTICAL MODEL;

EID: 84898044168     PISSN: 17502640     EISSN: 17502659     Source Type: Journal    
DOI: 10.1111/irv.12226     Document Type: Review
Times cited : (188)

References (33)
  • 1
    • 73249138953 scopus 로고    scopus 로고
    • Combination strategies for pandemic influenza response - a systematic review of mathematical modeling studies
    • Lee VJ, Lye DC, Wilder-Smith A. Combination strategies for pandemic influenza response - a systematic review of mathematical modeling studies. BMC Med 2009; 7:76.
    • (2009) BMC Med , vol.7 , pp. 76
    • Lee, V.J.1    Lye, D.C.2    Wilder-Smith, A.3
  • 2
    • 79955754487 scopus 로고    scopus 로고
    • Planning for the control of pandemic influenza A (H1N1) in Los Angeles County and the United States
    • Chao DL, Matrajt L, Basta NE et al. Planning for the control of pandemic influenza A (H1N1) in Los Angeles County and the United States. Am J Epidemiol 2011; 173:1121-1130.
    • (2011) Am J Epidemiol , vol.173 , pp. 1121-1130
    • Chao, D.L.1    Matrajt, L.2    Basta, N.E.3
  • 3
    • 33947413867 scopus 로고    scopus 로고
    • Real-time epidemic forecasting for pandemic influenza
    • Hall IM, Gani R, Hughes HE, Leach S. Real-time epidemic forecasting for pandemic influenza. Epidemiol Infect 2007; 135:372-385.
    • (2007) Epidemiol Infect , vol.135 , pp. 372-385
    • Hall, I.M.1    Gani, R.2    Hughes, H.E.3    Leach, S.4
  • 4
    • 77956312736 scopus 로고    scopus 로고
    • Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore
    • Ong JBS, Chen MIC, Cook AR et al. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS One 2010; 5:e10036.
    • (2010) PLoS One , vol.5
    • Ong, J.B.S.1    Chen, M.I.C.2    Cook, A.R.3
  • 5
    • 84870905897 scopus 로고    scopus 로고
    • Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm
    • Tizzoni M, Bajardi P, Poletto C et al. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med 2012; 10:165.
    • (2012) BMC Med , vol.10 , pp. 165
    • Tizzoni, M.1    Bajardi, P.2    Poletto, C.3
  • 6
    • 78651369040 scopus 로고    scopus 로고
    • Pandemic influenza: modelling and public health perspectives
    • Arino J, Bauch C, Brauer F et al. Pandemic influenza: modelling and public health perspectives. Math Biosci Eng 2011; 8:1-20.
    • (2011) Math Biosci Eng , vol.8 , pp. 1-20
    • Arino, J.1    Bauch, C.2    Brauer, F.3
  • 7
    • 84877083865 scopus 로고    scopus 로고
    • Trends in parameterization, economics and host behaviour in influenza pandemic modelling: a review and reporting protocol
    • Carrasco LR, Jit M, Chen MI, Lee VJ, Milne GJ, Cook AR. Trends in parameterization, economics and host behaviour in influenza pandemic modelling: a review and reporting protocol. Emerg Themes Epidemiol 2013; 10:3.
    • (2013) Emerg Themes Epidemiol , vol.10 , pp. 3
    • Carrasco, L.R.1    Jit, M.2    Chen, M.I.3    Lee, V.J.4    Milne, G.J.5    Cook, A.R.6
  • 8
    • 68249159494 scopus 로고    scopus 로고
    • Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)
    • Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med 2009; 7:30.
    • (2009) BMC Med , vol.7 , pp. 30
    • Coburn, B.J.1    Wagner, B.G.2    Blower, S.3
  • 9
    • 0026884142 scopus 로고
    • The feasibility of forecasting influenza epidemics in Cuba
    • Aguirre A, Gonzalez E. The feasibility of forecasting influenza epidemics in Cuba. Mem Inst Oswaldo Cruz 1992; 87:429-432.
    • (1992) Mem Inst Oswaldo Cruz , vol.87 , pp. 429-432
    • Aguirre, A.1    Gonzalez, E.2
  • 10
  • 12
    • 77949771773 scopus 로고    scopus 로고
    • Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters
    • Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PLoS One 2010; 5:e9450.
    • (2010) PLoS One , vol.5
    • Soebiyanto, R.P.1    Adimi, F.2    Kiang, R.K.3
  • 13
    • 33846173024 scopus 로고    scopus 로고
    • Use of prediction markets to forecast infectious disease activity
    • Polgreen PM, Nelson FD, Neumann GR. Use of prediction markets to forecast infectious disease activity. Clin Infect Dis 2007; 44:272-279.
    • (2007) Clin Infect Dis , vol.44 , pp. 272-279
    • Polgreen, P.M.1    Nelson, F.D.2    Neumann, G.R.3
  • 14
    • 79951557043 scopus 로고    scopus 로고
    • Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009)
    • Nishiura H. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009). Biomed Eng Online 2011; 10:15.
    • (2011) Biomed Eng Online , vol.10 , pp. 15
    • Nishiura, H.1
  • 15
    • 0022600870 scopus 로고
    • Predicting the global spread of new infectious agents
    • Longini IM, Fine PEM, Thacker SB. Predicting the global spread of new infectious agents. Am J Epidemiol 1986; 123:383-391.
    • (1986) Am J Epidemiol , vol.123 , pp. 383-391
    • Longini, I.M.1    Fine, P.E.M.2    Thacker, S.B.3
  • 16
    • 75549085781 scopus 로고    scopus 로고
    • Pandemic H1N1 influenza: predicting the course of a pandemic and assessing the efficacy of the planned vaccination programme in the United States
    • Towers S, Feng Z. Pandemic H1N1 influenza: predicting the course of a pandemic and assessing the efficacy of the planned vaccination programme in the United States. Euro Surveill 2009; 14:19358.
    • (2009) Euro Surveill , vol.14 , pp. 19358
    • Towers, S.1    Feng, Z.2
  • 17
    • 84898031368 scopus 로고    scopus 로고
    • CDC. Updated CDC estimates of 2009 H1N1 influenza cases, hospitalizations and deaths in the United States, April 2009- April 10, 2010.(Accessed on 16 March 2012).
    • CDC. Updated CDC estimates of 2009 H1N1 influenza cases, hospitalizations and deaths in the United States, April 2009- April 10, 2010. http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm (Accessed on 16 March 2012).
  • 18
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A 2012; 109:20425-20430.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 19
    • 84898028869 scopus 로고    scopus 로고
    • Forecasting peaks of seasonal influenza epidemics
    • doi: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
    • Nsoesie E, Marathe M, Brownstein JS. Forecasting peaks of seasonal influenza epidemics. PLoS Curr 2013; 5 doi: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
    • (2013) PLoS Curr , vol.5
    • Nsoesie, E.1    Marathe, M.2    Brownstein, J.S.3
  • 21
    • 84878666859 scopus 로고    scopus 로고
    • Predictive validation of an influenza spread model
    • Hyder A, Buckeridge DL, Leung B. Predictive validation of an influenza spread model. PLoS One 2013; 8:e65459.
    • (2013) PLoS One , vol.8
    • Hyder, A.1    Buckeridge, D.L.2    Leung, B.3
  • 22
    • 44849101593 scopus 로고    scopus 로고
    • Mathematical models of infectious disease transmission
    • Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol 2008; 6:477-487.
    • (2008) Nat Rev Microbiol , vol.6 , pp. 477-487
    • Grassly, N.C.1    Fraser, C.2
  • 23
    • 79957755362 scopus 로고    scopus 로고
    • Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1
    • Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC. Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror, 2011; 9:89-115.
    • (2011) Biosecur Bioterror , vol.9 , pp. 89-115
    • Lipsitch, M.1    Finelli, L.2    Heffernan, R.T.3    Leung, G.M.4    Redd, S.C.5
  • 25
    • 4544318829 scopus 로고    scopus 로고
    • Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures
    • Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 2004; 160:509-516.
    • (2004) Am J Epidemiol , vol.160 , pp. 509-516
    • Wallinga, J.1    Teunis, P.2
  • 26
    • 7944235308 scopus 로고    scopus 로고
    • A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data
    • Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boëlle PY. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Stat Med 2004; 23:3469-3487.
    • (2004) Stat Med , vol.23 , pp. 3469-3487
    • Cauchemez, S.1    Carrat, F.2    Viboud, C.3    Valleron, A.J.4    Boëlle, P.Y.5
  • 27
    • 67249138142 scopus 로고    scopus 로고
    • Pandemic potential of a strain of influenza A (H1N1): early findings
    • Fraser C, Donnelly CA, Cauchemez S et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 2009; 324:1557-1561.
    • (2009) Science , vol.324 , pp. 1557-1561
    • Fraser, C.1    Donnelly, C.A.2    Cauchemez, S.3
  • 28
    • 69249096650 scopus 로고    scopus 로고
    • Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America
    • Pourbohloul B, Ahued A, Davoudi B et al. Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respir Viruses 2009; 3:215-222.
    • (2009) Influenza Other Respir Viruses , vol.3 , pp. 215-222
    • Pourbohloul, B.1    Ahued, A.2    Davoudi, B.3
  • 29
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg J, Mohebbi MH, Patel RS et al. Detecting influenza epidemics using search engine query data. Nature 2009; 457:1012-1014.
    • (2009) Nature , vol.457 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3
  • 30
    • 84874002846 scopus 로고    scopus 로고
    • Influenza forecasting with Google Flu Trends
    • Dugas AF, Jalalpour M, Gel Y et al. Influenza forecasting with Google Flu Trends. PLoS One 2013; 8:e56176.
    • (2013) PLoS One , vol.8
    • Dugas, A.F.1    Jalalpour, M.2    Gel, Y.3
  • 31
    • 77958616458 scopus 로고    scopus 로고
    • Internet search limitations and pandemic influenza, Singapore
    • Cook AR, Chen MIC, Lin RTP. Internet search limitations and pandemic influenza, Singapore. Emerg Infect Dis 2010; 16:1647-1649.
    • (2010) Emerg Infect Dis , vol.16 , pp. 1647-1649
    • Cook, A.R.1    Chen, M.I.C.2    Lin, R.T.P.3
  • 32
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D. When Google got flu wrong. Nature 2013; 494:155-156.
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 33
    • 66749130411 scopus 로고    scopus 로고
    • A systematic review of models for forecasting the number of emergency department visits
    • Wargon M, Guidet B, Hoang TD, Hejblum G. A systematic review of models for forecasting the number of emergency department visits. Emerg Med J 2009; 26:395-399.
    • (2009) Emerg Med J , vol.26 , pp. 395-399
    • Wargon, M.1    Guidet, B.2    Hoang, T.D.3    Hejblum, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.