메뉴 건너뛰기




Volumn 11, Issue 3, 2017, Pages 442-449

Elbow musculoskeletal model for industrial exoskeleton with modulated impedance based on operator’s arm stiffness

Author keywords

Arm stiffness; Elbow model; Exoskeleton; Hill muscle model

Indexed keywords

MUSCLE; STIFFNESS;

EID: 85018353255     PISSN: 18817629     EISSN: 18838022     Source Type: Journal    
DOI: 10.20965/ijat.2017.p0442     Document Type: Article
Times cited : (18)

References (47)
  • 1
    • 33750372556 scopus 로고    scopus 로고
    • Real-time myoprocessors for a neural controlled powered exoskeleton arm
    • E. E. Cavallaro, J. Rosen, J. C. Perry, and S. Burns, “Real-time myoprocessors for a neural controlled powered exoskeleton arm,” IEEE Trans. Biomed. Eng., Vol.53, pp. 2387-2396, November 2006.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 2387-2396
    • Cavallaro, E.E.1    Rosen, J.2    Perry, J.C.3    Burns, S.4
  • 4
    • 0004674281 scopus 로고
    • Research and Development Prototype for Machine Augmentation of Human Strength and Endurance. Hardiman I Project
    • Schenectady, NY
    • B. J. Makinson, “Research and Development Prototype for Machine Augmentation of Human Strength and Endurance. Hardiman I Project,” General Electric Report S-71-1056, Schenectady, NY, May 1971.
    • (1971) General Electric Report S-71-1056
    • Makinson, B.J.1
  • 5
    • 85015804314 scopus 로고    scopus 로고
    • State-of-the-art and Future Directions for Robotic Lower Limb Exoskeletons
    • A. Young and D. Ferris, “State-of-the-art and Future Directions for Robotic Lower Limb Exoskeletons,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol.25, No.2, pp. 171-182, February 2017.
    • (2017) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.25 , Issue.2 , pp. 171-182
    • Young, A.1    Ferris, D.2
  • 6
    • 33645822543 scopus 로고    scopus 로고
    • Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)
    • A. B. Zoss, H. Kazerooni, and A. Chu, “Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX),” IEEE/ASME Trans. Mechatr., Vol.11, pp. 128-138, April 2006.
    • (2006) IEEE/ASME Trans. Mechatr. , vol.11 , pp. 128-138
    • Zoss, A.B.1    Kazerooni, H.2    Chu, A.3
  • 8
    • 34548668211 scopus 로고    scopus 로고
    • ARMin: A robot for patient-cooperative arm therapy
    • T. Nef, M. Mihelj, and R. Riener, “ARMin: a robot for patient-cooperative arm therapy,” Med. Biol. Eng. Comput., Vol.45, pp. 887-900, September 2007.
    • (2007) Med. Biol. Eng. Comput. , vol.45 , pp. 887-900
    • Nef, T.1    Mihelj, M.2    Riener, R.3
  • 9
    • 0028839953 scopus 로고
    • Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation
    • S. Zhou, D. L. Lawson, W. E. Morrison, and I. Fairweather, “Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation,” Eur. J. Appl. Physiol. Occup. Physiol., Vol.70, No.2, pp. 138-145, March 1995.
    • (1995) Eur. J. Appl. Physiol. Occup. Physiol. , vol.70 , Issue.2 , pp. 138-145
    • Zhou, S.1    Lawson, D.L.2    Morrison, W.E.3    Fairweather, I.4
  • 10
    • 84933676803 scopus 로고    scopus 로고
    • A combined robotic and cognitive training for locomotor rehabilitation: Evidences of cerebral functional reorganization in two chronic traumatic brain injured patients
    • K. Sacco, F. Cauda, F. D’Agata, S. Duca, M. Zettin, R. Virgilio et al., “A combined robotic and cognitive training for locomotor rehabilitation: evidences of cerebral functional reorganization in two chronic traumatic brain injured patients,” Front. Hum. Neurosci., Vol.5, p. 146, November 2011.
    • (2011) Front. Hum. Neurosci. , vol.5 , pp. 146
    • Sacco, K.1    Cauda, F.2    D’Agata, F.3    Duca, S.4    Zettin, M.5    Virgilio, R.6
  • 11
    • 85009963972 scopus 로고    scopus 로고
    • Safety and Risk Management in Designing for the Lifecycle of an Exoskeleton: A Novel Process Developed in the Robo-Mate Project
    • J. van der Vorm, R. Nugent, and L. O’Sullivan, “Safety and Risk Management in Designing for the Lifecycle of an Exoskeleton: A Novel Process Developed in the Robo-Mate Project,” Procedia Manuf., Vol.3, pp. 1410-1417, July 2015.
    • (2015) Procedia Manuf. , vol.3 , pp. 1410-1417
    • Van Der Vorm, J.1    Nugent, R.2    O’Sullivan, L.3
  • 12
    • 85018305923 scopus 로고    scopus 로고
    • Measurement procedure of parameter to assess an exoskeleton introduction in industrial reality: Main issues and EAWS risk assessment
    • S. Spada, L. Ghibaudo, S. Gilotta, L. Gastaldi, and M. P. Cavatorta, “Measurement procedure of parameter to assess an exoskeleton introduction in industrial reality: main issues and EAWS risk assessment,” Proc. Manuf., 2017.
    • (2017) Proc. Manuf.
    • Spada, S.1    Ghibaudo, L.2    Gilotta, S.3    Gastaldi, L.4    Cavatorta, M.P.5
  • 13
    • 84902153790 scopus 로고    scopus 로고
    • Ergonomic contribution of ABLE exoskeleton in automotive industry
    • N. Sylla, V. Bonnet, F. Colledani, and P. Fraisse, “Ergonomic contribution of ABLE exoskeleton in automotive industry,” Int. J. Ind. Ergon., Vol.44, pp. 475-481, July 2014.
    • (2014) Int. J. Ind. Ergon. , vol.44 , pp. 475-481
    • Sylla, N.1    Bonnet, V.2    Colledani, F.3    Fraisse, P.4
  • 14
    • 0023476069 scopus 로고
    • The control of hand equilibrium trajectories in multi-joint arm movements
    • T. Flash, “The control of hand equilibrium trajectories in multi-joint arm movements,” Biol. Cybern., Vol.57, pp. 257-274, November 1987.
    • (1987) Biol. Cybern. , vol.57 , pp. 257-274
    • Flash, T.1
  • 15
    • 0035936150 scopus 로고    scopus 로고
    • The central nervous system stabilizes unstable dynamics by learning optimal impedance
    • E. Burdet, R. Osu, D. Franklin, T. Milner, and M. Kawato, “The central nervous system stabilizes unstable dynamics by learning optimal impedance,” Nature, Vol.414, pp. 446-449, November 2001.
    • (2001) Nature , vol.414 , pp. 446-449
    • Burdet, E.1    Osu, R.2    Franklin, D.3    Milner, T.4    Kawato, M.5
  • 16
    • 0027395689 scopus 로고
    • Postural force fields of the human arm and their role in generating multijoint movements
    • R. Shadmehr, F. A. Mussa-Ivaldi, and E. Bizzi, “Postural force fields of the human arm and their role in generating multijoint movements,” J. Neurosci., Vol.13, pp. 45-62, January 1993.
    • (1993) J. Neurosci. , vol.13 , pp. 45-62
    • Shadmehr, R.1    Mussa-Ivaldi, F.A.2    Bizzi, E.3
  • 17
    • 0036085771 scopus 로고    scopus 로고
    • Voluntary Control of Static Endpoint Stiffness During Force Regulation Tasks
    • E. J. Perreault, R. F. Kirsch, and P. E. Crago, “Voluntary Control of Static Endpoint Stiffness During Force Regulation Tasks,” J Neurophysiol, Vol.87, pp. 2808-2816, June 2002.
    • (2002) J Neurophysiol , vol.87 , pp. 2808-2816
    • Perreault, E.J.1    Kirsch, R.F.2    Crago, P.E.3
  • 18
    • 0141676240 scopus 로고    scopus 로고
    • Adaptive control of stiffness to stabilize hand position with large loads
    • D. Franklin and T. Milner, “Adaptive control of stiffness to stabilize hand position with large loads,” Exp. Brain Res., Vol.152, No.2, pp. 211-220, July 2003.
    • (2003) Exp. Brain Res. , vol.152 , Issue.2 , pp. 211-220
    • Franklin, D.1    Milner, T.2
  • 19
    • 0021590095 scopus 로고
    • Impedance control: An approach to manipulation
    • N. Hogan, “Impedance control: An approach to manipulation,” Am. Control Conf. 1984, June 1984.
    • (1984) Am. Control Conf. , pp. 1984
    • Hogan, N.1
  • 20
    • 0022076932 scopus 로고
    • Manipulability of Robotic Mechanisms
    • T. Yoshikawa, “Manipulability of Robotic Mechanisms,” Int. J. Rob. Res., Vol.4, pp. 3-9, June 1985.
    • (1985) Int. J. Rob. Res. , vol.4 , pp. 3-9
    • Yoshikawa, T.1
  • 21
    • 84955261569 scopus 로고    scopus 로고
    • Isotropic compliance in the Special Euclidean Group SE(Refeq3)
    • M. Verotti, P. Masarati, M. Morandini, and N. P. Belfiore, “Isotropic compliance in the Special Euclidean Group SE(refeq3),” Mech. Mach. Theory, Vol.98, pp. 263-281, April 2016.
    • (2016) Mech. Mach. Theory , vol.98 , pp. 263-281
    • Verotti, M.1    Masarati, P.2    Morandini, M.3    Belfiore, N.P.4
  • 22
    • 84986305793 scopus 로고    scopus 로고
    • Isotropic Compliance in E(3): Feasibility and Workspace Mapping
    • M. Verotti and N. P. Belfiore, “Isotropic Compliance in E(3): Feasibility and Workspace Mapping,” J. Mech. Robot., Vol.8, No.6, September 2016.
    • (2016) J. Mech. Robot , vol.8 , Issue.6
    • Verotti, M.1    Belfiore, N.P.2
  • 23
    • 0022345303 scopus 로고
    • Neural, mechanical, and geometric factors subserving arm posture in humans
    • F. Mussa-Ivaldi, N. Hogan, and E. Bizzi, “Neural, mechanical, and geometric factors subserving arm posture in humans,” J. Neurosci., Vol.5, pp. 2732-2743, October 1985.
    • (1985) J. Neurosci. , vol.5 , pp. 2732-2743
    • Mussa-Ivaldi, F.1    Hogan, N.2    Bizzi, E.3
  • 24
    • 0037880377 scopus 로고    scopus 로고
    • Role of cocontraction in arm movement accuracy
    • P. L. Gribble, L. I. Mullin, N. Cothros, and A. Mattar, “Role of cocontraction in arm movement accuracy,” J. Neurophysiol, Vol.89, No.5, pp. 2396-2405, May 2003.
    • (2003) J. Neurophysiol , vol.89 , Issue.5 , pp. 2396-2405
    • Gribble, P.L.1    Mullin, L.I.2    Cothros, N.3    Mattar, A.4
  • 25
    • 3142773362 scopus 로고    scopus 로고
    • Optimal impedance control for task achievement in the presence of signal-dependent noise
    • R. Osu, N. Kamimura, H. Iwasaki, E. Nakano, C. M. Harris, Y. Wada, and M. Kawato, “Optimal impedance control for task achievement in the presence of signal-dependent noise,” J. Neurophysiol, Vol.92, No.2, pp. 1199-1215, August 2004.
    • (2004) J. Neurophysiol , vol.92 , Issue.2 , pp. 1199-1215
    • Osu, R.1    Kamimura, N.2    Iwasaki, H.3    Nakano, E.4    Harris, C.M.5    Wada, Y.6    Kawato, M.7
  • 26
    • 0032213320 scopus 로고    scopus 로고
    • Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments
    • H. Gomi and R. Osu, “Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments,” J. Neurosci., Vol.18, pp. 8965-8978, November 1998.
    • (1998) J. Neurosci. , vol.18 , pp. 8965-8978
    • Gomi, H.1    Osu, R.2
  • 27
    • 0033054083 scopus 로고    scopus 로고
    • Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals
    • R. Osu and H. Gomi, “Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals,” J. Neurophysiol., Vol.81, pp. 1458-1468, April 1999.
    • (1999) J. Neurophysiol. , vol.81 , pp. 1458-1468
    • Osu, R.1    Gomi, H.2
  • 31
    • 84870482171 scopus 로고    scopus 로고
    • Tele-impedance: Teleoperation with impedance regulation using a body-machine interface
    • A. Ajoudani, N. Tsagarakis, and A. Bicchi, “Tele-impedance: Teleoperation with impedance regulation using a body-machine interface,” Int. J. Rob. Res., Vol.31, pp. 1-14, October 2012.
    • (2012) Int. J. Rob. Res. , vol.31 , pp. 1-14
    • Ajoudani, A.1    Tsagarakis, N.2    Bicchi, A.3
  • 33
    • 84946076128 scopus 로고    scopus 로고
    • Multi-directional impedance control with electromyography for compliant human-robot interaction
    • M. Ison and P. Artemiadis, “Multi-directional impedance control with electromyography for compliant human-robot interaction,” IEEE Int. Conf. Rehab. Robotics, pp. 416-421, October 2015.
    • (2015) IEEE Int. Conf. Rehab. Robotics , pp. 416-421
    • Ison, M.1    Artemiadis, P.2
  • 34
    • 84902193287 scopus 로고    scopus 로고
    • Task-dependent impedance and implications for upper-limb prosthesis control
    • A. A. Blank, A. M. Okamura, and L. L. Whitcomb, “Task-dependent impedance and implications for upper-limb prosthesis control,” Int. J. Rob.control, Vol.33, pp. 827-846, May 2014.
    • (2014) Int. J. Rob.Control , vol.33 , pp. 827-846
    • Blank, A.A.1    Okamura, A.M.2    Whitcomb, L.L.3
  • 35
    • 24644452142 scopus 로고    scopus 로고
    • Virtual impedance adjustment in unconstrained motion for an exoskeletal robot assisting the lower limb
    • S. Lee and Y. Sankai, “Virtual impedance adjustment in unconstrained motion for an exoskeletal robot assisting the lower limb,” Adv. Robot., Vol.19, pp. 773-795, January 2005.
    • (2005) Adv. Robot. , vol.19 , pp. 773-795
    • Lee, S.1    Sankai, Y.2
  • 36
    • 0027217558 scopus 로고
    • Time-varying mechanical behavior of multijointed arm in man
    • F. Lacquaniti, M. Carrozzo, and N. A. Borghese, “Time-varying mechanical behavior of multijointed arm in man,” J. Neurophysiol., Vol.69, pp. 1443-1464, May 1993.
    • (1993) J. Neurophysiol. , vol.69 , pp. 1443-1464
    • Lacquaniti, F.1    Carrozzo, M.2    Borghese, N.A.3
  • 37
    • 0030010484 scopus 로고    scopus 로고
    • Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement
    • H. Gomi and M. Kawato, “Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement,” Science, Vol.272, pp. 117-120, April 1996.
    • (1996) Science , vol.272 , pp. 117-120
    • Gomi, H.1    Kawato, M.2
  • 38
    • 70349876486 scopus 로고    scopus 로고
    • Impedance control reduces instability that arises from motor noise
    • L. P. J. Selen, D. W. Franklin, and D. M. Wolpert, “Impedance control reduces instability that arises from motor noise,” J. Neurosci., Vol.29, pp. 12606-12616, October 2009.
    • (2009) J. Neurosci. , vol.29 , pp. 12606-12616
    • Selen, L.P.J.1    Franklin, D.W.2    Wolpert, D.M.3
  • 39
    • 0033721523 scopus 로고    scopus 로고
    • Drive train design of redundant-drive backlash-free robotic mechanisms
    • D.-Z. Chen and K.-L. Yao, “Drive train design of redundant-drive backlash-free robotic mechanisms,” Mech. Mach. Theory, Vol.35, pp. 1269-1285, September 2000.
    • (2000) Mech. Mach. Theory , vol.35 , pp. 1269-1285
    • Chen, D.-Z.1    Yao, K.-L.2
  • 40
    • 0036133247 scopus 로고    scopus 로고
    • On the conceptual design of redundant-drive backlash-free geared robot manipulators
    • D.-Z. Chen, C.-P. Liu, and D.-W. Duh, “On the conceptual design of redundant-drive backlash-free geared robot manipulators,” Mech. Mach. Theory, Vol.37, pp. 3-14, January 2002.
    • (2002) Mech. Mach. Theory , vol.37 , pp. 3-14
    • Chen, D.-Z.1    Liu, C.-P.2    Duh, D.-W.3
  • 41
    • 77049155393 scopus 로고
    • The Mechanics of Active Muscle
    • A. V. Hill, “The Mechanics of Active Muscle,” Proc. R. Soc. B Biol. Sci., Vol.141, pp. 104-117, March 1953.
    • (1953) Proc. R. Soc. B Biol. Sci. , vol.141 , pp. 104-117
    • Hill, A.V.1
  • 43
    • 84996917572 scopus 로고    scopus 로고
    • Determination of the Human Arm Stiffness Efficiency with a Two Antagonist Muscles Model
    • D. Borzelli, S. Pastorelli, and L. Gastaldi, “Determination of the Human Arm Stiffness Efficiency with a Two Antagonist Muscles Model,” in Mechanisms and Machine Science, pp. 71-78, November 2017.
    • (2017) Mechanisms and Machine Science , pp. 71-78
    • Borzelli, D.1    Pastorelli, S.2    Gastaldi, L.3
  • 44
    • 78650876374 scopus 로고    scopus 로고
    • The central nervous system does not minimize energy cost in arm movements
    • D. A. Kistemaker, J. D. Wong, and P. L. Gribble, “The central nervous system does not minimize energy cost in arm movements,” J. Neurophysiol., Vol.104, pp. 2985-2994, December 2010.
    • (2010) J. Neurophysiol. , vol.104 , pp. 2985-2994
    • Kistemaker, D.A.1    Wong, J.D.2    Gribble, P.L.3
  • 45
    • 21144437403 scopus 로고    scopus 로고
    • A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
    • K. R. S. Holzbaur, W. M. Murray, and S. L. Delp, “A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control,” Ann. Biomed. Eng., Vol.33, pp. 829-840, June 2005.
    • (2005) Ann. Biomed. Eng. , vol.33 , pp. 829-840
    • Holzbaur, K.R.S.1    Murray, W.M.2    Delp, S.L.3
  • 47
    • 84959466547 scopus 로고    scopus 로고
    • Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption
    • J. M. Inouye and F. J. Valero-Cuevas, “Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption,” PLoS Comput. Biol., Vol.12, p. e1004737, February 2016.
    • (2016) Plos Comput. Biol , vol.12
    • Inouye, J.M.1    Valero-Cuevas, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.