메뉴 건너뛰기




Volumn 9, Issue 4, 2017, Pages

Deep learning approach for car detection in UAV imagery

Author keywords

Car counting; Convolutional neural networks (CNNs); Deep learning; Mean shift segmentation; Support vector machines (SVM); UAV imagery

Indexed keywords

CONVOLUTION; DEEP LEARNING; FEATURE EXTRACTION; IMAGE SEGMENTATION; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 85017644249     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9040312     Document Type: Article
Times cited : (274)

References (38)
  • 1
    • 84897562134 scopus 로고    scopus 로고
    • Unmanned aerial systems for photogrammetry and remote sensing: A review
    • Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79-97
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.92 , pp. 79-97
    • Colomina, I.1    Molina, P.2
  • 2
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
    • Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722-738
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 722-738
    • Berni, J.1    Zarco-Tejada, P.J.2    Suarez, L.3    Fereres, E.4
  • 3
    • 84877928191 scopus 로고    scopus 로고
    • Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System
    • Uto, K.; Seki, H.; Saito, G.; Kosugi, Y. Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 851-860
    • (2013) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.6 , pp. 851-860
    • Uto, K.1    Seki, H.2    Saito, G.3    Kosugi, Y.4
  • 4
    • 70349645102 scopus 로고    scopus 로고
    • A 3D Model of Castle Landenberg (CH) from Combined Photogrammetric Processing of Terrestrial and UAV-based Images
    • Püschel, H.; Sauerbier, M.; Eisenbeiss, H. A 3D Model of Castle Landenberg (CH) from Combined Photogrammetric Processing of Terrestrial and UAV-based Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 93-98
    • (2008) Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci , vol.37 , pp. 93-98
    • Püschel, H.1    Sauerbier, M.2    Eisenbeiss, H.3
  • 6
    • 83655198290 scopus 로고    scopus 로고
    • Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology
    • Lin, A.Y.-M.; Novo, A.; Har-Noy, S.; Ricklin, N.D.; Stamatiou, K. Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 870-876
    • (2011) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.4 , pp. 870-876
    • Lin, A.Y.-M.1    Novo, A.2    Har-Noy, S.3    Ricklin, N.D.4    Stamatiou, K.5
  • 8
    • 84891557748 scopus 로고    scopus 로고
    • Automatic Car Counting Method for Unmanned Aerial Vehicle Images
    • Moranduzzo, T.; Melgani, F. Automatic Car Counting Method for Unmanned Aerial Vehicle Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1635-1647
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 1635-1647
    • Moranduzzo, T.1    Melgani, F.2
  • 9
    • 84902086179 scopus 로고    scopus 로고
    • Detecting Cars in UAV Images With a Catalog-Based Approach
    • Moranduzzo, T.; Melgani, F. Detecting Cars in UAV Images With a Catalog-Based Approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6356-6367
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 6356-6367
    • Moranduzzo, T.1    Melgani, F.2
  • 10
    • 84929649335 scopus 로고    scopus 로고
    • A fast object detector based on high-order gradients and Gaussian process regression for UAV images
    • Moranduzzo, T.; Melgani, F.; Bazi, Y.; Alajlan, N. A fast object detector based on high-order gradients and Gaussian process regression for UAV images. Int. J. Remote Sens. 2015, 36, 37-41
    • (2015) Int. J. Remote Sens , vol.36 , pp. 37-41
    • Moranduzzo, T.1    Melgani, F.2    Bazi, Y.3    Alajlan, N.4
  • 12
    • 0036132796 scopus 로고    scopus 로고
    • Performance analysis of a simple vehicle detection algorithm
    • Moon, H.; Chellappa, R.; Rosenfeld, A. Performance analysis of a simple vehicle detection algorithm. Image Vis. Comput. 2002, 20, 1-13
    • (2002) Image Vis. Comput , vol.20 , pp. 1-13
    • Moon, H.1    Chellappa, R.2    Rosenfeld, A.3
  • 16
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks
    • Chen, X.; Xiang, S.; Liu, C.-L.; Pan, C.-H. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797-1801
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 17
    • 84912110068 scopus 로고    scopus 로고
    • An Operational System for Estimating Road Traffic Information from Aerial Images
    • Leitloff, J.; Rosenbaum, D.; Kurz, F.; Meynberg, O.; Reinartz, P. An Operational System for Estimating Road Traffic Information from Aerial Images. Remote Sens. 2014, 6, 11315-11341
    • (2014) Remote Sens , vol.6 , pp. 11315-11341
    • Leitloff, J.1    Rosenbaum, D.2    Kurz, F.3    Meynberg, O.4    Reinartz, P.5
  • 18
    • 84983550752 scopus 로고    scopus 로고
    • A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images
    • Xu, Y.; Yu, G.; Wang, Y.; Wu, X.; Ma, Y. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images. Sensors 2016, 16, 1325
    • (2016) Sensors , vol.16 , pp. 1325
    • Xu, Y.1    Yu, G.2    Wang, Y.3    Wu, X.4    Ma, Y.5
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • Hinton, G.; Osindero, S.; Teh, Y. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527-1554
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 21
    • 84901999583 scopus 로고    scopus 로고
    • Convolutional Neural Networks for Distant Speech Recognition
    • Swietojanski, P.; Ghoshal, A.; Renals, S. Convolutional Neural Networks for Distant Speech Recognition. IEEE Signal Process. Lett. 2014, 21, 1120-1124
    • (2014) IEEE Signal Process. Lett , vol.21 , pp. 1120-1124
    • Swietojanski, P.1    Ghoshal, A.2    Renals, S.3
  • 28
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790-799. [CrossRef]
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell , vol.17 , pp. 790-799
    • Cheng, Y.1
  • 29
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 30
    • 33746427122 scopus 로고    scopus 로고
    • Graph Cuts and Efficient N-D Image Segmentation
    • Boykov, Y.; Funka-Lea, G. Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comput. Vis. 2006, 70, 109-131
    • (2006) Int. J. Comput. Vis , vol.70 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2
  • 33
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • Vincent, L.; Soille, P.Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583-598
    • (1991) IEEE Trans Pattern Anal. Mach. Intell , vol.13 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 36
    • 84920106320 scopus 로고    scopus 로고
    • Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-resolution 2D and 3D Images
    • Brosch, T.; Tam, R. Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-resolution 2D and 3D Images. Neural Comput. 2015, 27, 211-227
    • (2015) Neural Comput , vol.27 , pp. 211-227
    • Brosch, T.1    Tam, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.