-
1
-
-
77954650208
-
Digital pathology image analysis: opportunities and challenges
-
Madabhushi A. Digital pathology image analysis: opportunities and challenges. Imaging Med 2009, 1(1):7-10. 10.2217/iim.09.9.
-
(2009)
Imaging Med
, vol.1
, Issue.1
, pp. 7-10
-
-
Madabhushi, A.1
-
2
-
-
84863869228
-
Histology image analysis for carcinoma detection and grading
-
He L., Long R., Antani S., Thoma G. Histology image analysis for carcinoma detection and grading. Comput Methods Programs Biomed 2012, 107(3):538-556. 10.1016/j.cmpb.2011.12.007.
-
(2012)
Comput Methods Programs Biomed
, vol.107
, Issue.3
, pp. 538-556
-
-
He, L.1
Long, R.2
Antani, S.3
Thoma, G.4
-
3
-
-
77956941136
-
Histopathological image analysis: a review
-
Gurcan M., Boucheron L., Can A., Madabhushi A., Rajpoot N., Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng 2009, 2:147-171.
-
(2009)
IEEE Rev Biomed Eng
, vol.2
, pp. 147-171
-
-
Gurcan, M.1
Boucheron, L.2
Can, A.3
Madabhushi, A.4
Rajpoot, N.5
Yener, B.6
-
4
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput 2006, 18(7):1527-1554.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
6
-
-
54549108740
-
Comprehensive genomic characterization defines human glioblastoma genes and core pathways
-
McLendon R., Friedman A., Bigner D., Van Meir E., Brat D., Mastrogianakis G., et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455(7216):1061-1068.
-
(2008)
Nature
, vol.455
, Issue.7216
, pp. 1061-1068
-
-
McLendon, R.1
Friedman, A.2
Bigner, D.3
Van Meir, E.4
Brat, D.5
Mastrogianakis, G.6
-
7
-
-
38549107989
-
The Stanford tissue microarray database
-
Marinelli R., Montgomery K., Liu C., Shah N., Prapong W., Nitzberg M., et al. The Stanford tissue microarray database. Nucleic Acids Res 2008, 36(Suppl. 1):D871-D877.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. D871-D877
-
-
Marinelli, R.1
Montgomery, K.2
Liu, C.3
Shah, N.4
Prapong, W.5
Nitzberg, M.6
-
8
-
-
80052324279
-
Computational pathology: challenges and promises for tissue analysis
-
Fuchs T., Buhmann J. Computational pathology: challenges and promises for tissue analysis. Comput Med Imaging Graph 2011, 35(7):515-530.
-
(2011)
Comput Med Imaging Graph
, vol.35
, Issue.7
, pp. 515-530
-
-
Fuchs, T.1
Buhmann, J.2
-
10
-
-
0026744308
-
Three-dimensional image processing for morphometric analysis of epithelium sections
-
Albert R., Schindewolf T., Baumann I., Harms H. Three-dimensional image processing for morphometric analysis of epithelium sections. Cytometry 1992, 13(7):759-765. 10.1002/cyto.990130712.
-
(1992)
Cytometry
, vol.13
, Issue.7
, pp. 759-765
-
-
Albert, R.1
Schindewolf, T.2
Baumann, I.3
Harms, H.4
-
11
-
-
57649229046
-
Cell-graph mining for breast tissue modeling and classification
-
Institute of Electrical & Electronics Engineers (IEEE), Lyon, France, M. Akay, G. Delhomme, J. Rousseau (Eds.)
-
Bilgin C., Demir C., Nagi C., Yener B. Cell-graph mining for breast tissue modeling and classification. 29th annual international conference of the IEEE engineering in medicine and biology society, 2007. EMBS 2007 2007, 5311-5314. Institute of Electrical & Electronics Engineers (IEEE), Lyon, France. 10.1109/IEMBS.2007.4353540. M. Akay, G. Delhomme, J. Rousseau (Eds.).
-
(2007)
29th annual international conference of the IEEE engineering in medicine and biology society, 2007. EMBS 2007
, pp. 5311-5314
-
-
Bilgin, C.1
Demir, C.2
Nagi, C.3
Yener, B.4
-
12
-
-
36348964155
-
Automated grading of prostate cancer using architectural and textural image features
-
Institute of Electrical & Electronics Engineers (IEEE), Washington, USA, J. Fessler, M. Wernick (Eds.)
-
Doyle S., Hwang M., Shah K., Madabhushi A., Feldman M., Tomaszeweski J. Automated grading of prostate cancer using architectural and textural image features. 4th IEEE international symposium on biomedical imaging: from nano to macro, 2007. ISBI 2007 2007, 1284-1287. Institute of Electrical & Electronics Engineers (IEEE), Washington, USA. 10.1109/ISBI.2007.357094. J. Fessler, M. Wernick (Eds.).
-
(2007)
4th IEEE international symposium on biomedical imaging: from nano to macro, 2007. ISBI 2007
, pp. 1284-1287
-
-
Doyle, S.1
Hwang, M.2
Shah, K.3
Madabhushi, A.4
Feldman, M.5
Tomaszeweski, J.6
-
13
-
-
71749111270
-
A boosting cascade for automated detection of prostate cancer from digitized histology
-
Springer-Verlag, Berlin, Heidelberg, R. Larsen, M. Nielsen, J. Sporring (Eds.)
-
Doyle S., Madabhushi A., Feldman M., Tomaszeweski J. A boosting cascade for automated detection of prostate cancer from digitized histology. Proceedings of the 9th international conference on medical image computing and computer-assisted intervention - volume Part II, MICCAI'06 2006, 504-511. Springer-Verlag, Berlin, Heidelberg. 10.1007/11866763_62. R. Larsen, M. Nielsen, J. Sporring (Eds.).
-
(2006)
Proceedings of the 9th international conference on medical image computing and computer-assisted intervention - volume Part II, MICCAI'06
, pp. 504-511
-
-
Doyle, S.1
Madabhushi, A.2
Feldman, M.3
Tomaszeweski, J.4
-
14
-
-
59349090297
-
Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development
-
Sertel O., Kong J., Shimada H., Catalyurek U., Saltz J., Gurcan M. Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recognit 2009, 42(6):1093-1103. 10.1016/j.patcog.2008.08.027.
-
(2009)
Pattern Recognit
, vol.42
, Issue.6
, pp. 1093-1103
-
-
Sertel, O.1
Kong, J.2
Shimada, H.3
Catalyurek, U.4
Saltz, J.5
Gurcan, M.6
-
15
-
-
84880902295
-
Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides
-
Basavanhally A., Ganesan S., Feldman M., Shih N., Mies C., Tomaszeweski J., et al. Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides. IEEE Trans Biomed Eng 2013, 60(8):2089-2099. 10.1109/TBME.2013.2245129.
-
(2013)
IEEE Trans Biomed Eng
, vol.60
, Issue.8
, pp. 2089-2099
-
-
Basavanhally, A.1
Ganesan, S.2
Feldman, M.3
Shih, N.4
Mies, C.5
Tomaszeweski, J.6
-
18
-
-
84898478937
-
Unsupervised learning of shape manifolds
-
University of Warwick, UK, N. Rajpoot, A. Bhalerao (Eds.)
-
Rajpoot N., Arif M., Bhalerao A. Unsupervised learning of shape manifolds. Procedings of the British Machine Vision Conference 2007, British Machine Vision Association 2007, University of Warwick, UK. 10.5244/c.21.90. N. Rajpoot, A. Bhalerao (Eds.).
-
(2007)
Procedings of the British Machine Vision Conference 2007, British Machine Vision Association
-
-
Rajpoot, N.1
Arif, M.2
Bhalerao, A.3
-
19
-
-
0042826822
-
Independent component analysis: algorithms and applications
-
Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Netw 2000, 13(4):411-430.
-
(2000)
Neural Netw
, vol.13
, Issue.4
, pp. 411-430
-
-
Hyvärinen, A.1
Oja, E.2
-
21
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio Y., Lamblin P., Popovici D., Larochelle H. Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst 2007, 19:153.
-
(2007)
Adv Neural Inf Process Syst
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
22
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
R. Pieraccini, A. Colombo (Eds.)
-
Seide F., Li G., Yu D. Conversational speech transcription using context-dependent deep neural networks. Interspeech 2011, International Speech Communication Association 2011, R. Pieraccini, A. Colombo (Eds.).
-
(2011)
Interspeech 2011, International Speech Communication Association
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
23
-
-
84890478042
-
Building high-level features using large scale unsupervised learning
-
Institute of Electrical & Electronics Engineers (IEEE), Vancouver, Canada, M. Adams, V. Zhao (Eds.)
-
Le Q., Ranzato M., Monga R., Devin M., Chen K., Corrado G., et al. Building high-level features using large scale unsupervised learning. 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP) 2013, 8595-8598. Institute of Electrical & Electronics Engineers (IEEE), Vancouver, Canada. 10.1109/ICASSP.2013.6639343. M. Adams, V. Zhao (Eds.).
-
(2013)
2013 IEEE international conference on acoustics, speech and signal processing (ICASSP)
, pp. 8595-8598
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.6
-
24
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Curran Associates, Inc. F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.)
-
Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 2012, 1097-1105. Curran Associates, Inc. F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.).
-
(2012)
Advances in neural information processing systems 25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
25
-
-
77951534803
-
Identifying histological elements with convolutional neural networks
-
ACM, Cergy-Pontoise, France, Y. Badr, A. Abraham, Y. Ohsawa (Eds.)
-
Malon C., Miller M., Burger H.C., Cosatto E., Graf H.P Identifying histological elements with convolutional neural networks. Proceedings of the 5th international conference on soft computing as transdisciplinary science and technology, CSTST '08 2008, 450-456. ACM, Cergy-Pontoise, France. 10.1145/1456223.1456316. Y. Badr, A. Abraham, Y. Ohsawa (Eds.).
-
(2008)
Proceedings of the 5th international conference on soft computing as transdisciplinary science and technology, CSTST '08
, pp. 450-456
-
-
Malon, C.1
Miller, M.2
Burger, H.C.3
Cosatto, E.4
Graf, H.P.5
-
26
-
-
78651468106
-
Cell nucleus segmentation in color histopathological imagery using convolutional networks
-
Institute of Electrical & Electronics Engineers (IEEE), Chongqing, China, Y. Tang, C.Y. Suen, H. He (Eds.)
-
Pang B., Zhang Y., Chen Q., Gao Z., Peng Q., You X. Cell nucleus segmentation in color histopathological imagery using convolutional networks. Chinese conference on pattern recognition (CCPR), IEEE 2010, 1-5. Institute of Electrical & Electronics Engineers (IEEE), Chongqing, China. 10.1109/CCPR.2010.5659313. Y. Tang, C.Y. Suen, H. He (Eds.).
-
(2010)
Chinese conference on pattern recognition (CCPR), IEEE
, pp. 1-5
-
-
Pang, B.1
Zhang, Y.2
Chen, Q.3
Gao, Z.4
Peng, Q.5
You, X.6
-
27
-
-
84878552509
-
A machine learning approach to classification of low resolution histological samples
-
[Master's thesis], EPFL, Switzerland
-
Montavon G. A machine learning approach to classification of low resolution histological samples. École Polytechnique Fédérale de Lausanne 2009, [Master's thesis], EPFL, Switzerland.
-
(2009)
École Polytechnique Fédérale de Lausanne
-
-
Montavon, G.1
-
28
-
-
84864859719
-
Learning invariant features of tumor signatures
-
Le Q., Han J., Gray J., Spellman P., Borowsky A., Parvin B. Learning invariant features of tumor signatures. 9th IEEE international symposium on biomedical imaging 2012, 10.1109/ISBI.2012.6235544.
-
(2012)
9th IEEE international symposium on biomedical imaging
-
-
Le, Q.1
Han, J.2
Gray, J.3
Spellman, P.4
Borowsky, A.5
Parvin, B.6
-
29
-
-
80052874098
-
Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
-
Institute of Electrical & Electronics Engineers (IEEE), Colorado Springs, USA, N. Pinto, T. Boult, T. Kanade, S. Peleg (Eds.)
-
Le Q., Zou W., Yeung S., Ng A. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. 2011 IEEE conference on computer vision and pattern recognition (CVPR) 2011, 3361-3368. Institute of Electrical & Electronics Engineers (IEEE), Colorado Springs, USA. 10.1109/CVPR.2011.5995496. N. Pinto, T. Boult, T. Kanade, S. Peleg (Eds.).
-
(2011)
2011 IEEE conference on computer vision and pattern recognition (CVPR)
, pp. 3361-3368
-
-
Le, Q.1
Zou, W.2
Yeung, S.3
Ng, A.4
-
30
-
-
84901774997
-
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
-
SPIE, San Diego, CA, USA, M.N. Gurcan, A. Madabhushi (Eds.)
-
Cruz-Roa A., Basavanhally A., González F., Gilmore H., Feldman M., Ganesan S., et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Medical imaging: digital pathology 2014, SPIE, San Diego, CA, USA. 10.1117/12.2043872. M.N. Gurcan, A. Madabhushi (Eds.).
-
(2014)
Medical imaging: digital pathology
-
-
Cruz-Roa, A.1
Basavanhally, A.2
González, F.3
Gilmore, H.4
Feldman, M.5
Ganesan, S.6
-
31
-
-
84885927068
-
Classification of mitotic figures with convolutional neural networks and seeded blob features
-
Malon C., Cosatto E. Classification of mitotic figures with convolutional neural networks and seeded blob features. J Pathol Inform 2013, 4(1):9.
-
(2013)
J Pathol Inform
, vol.4
, Issue.1
, pp. 9
-
-
Malon, C.1
Cosatto, E.2
-
32
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Springer, Berlin, Heidelberg/Nagoya, Japan, K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab (Eds.)
-
Cireşan D., Giusti A., Gambardella L., Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. Medical image computing and computer-assisted intervention - MICCAI, vol. 8150 of lecture notes in computer science 2013, 411-418. Springer, Berlin, Heidelberg/Nagoya, Japan. 10.1007/978-3-642-40763-5_51. K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab (Eds.).
-
(2013)
Medical image computing and computer-assisted intervention - MICCAI, vol. 8150 of lecture notes in computer science
, pp. 411-418
-
-
Cireşan, D.1
Giusti, A.2
Gambardella, L.3
Schmidhuber, J.4
-
33
-
-
84901804555
-
Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection
-
SPIE, San Diego, CA, USA, M.N. Gurcan, A. Madabhushi (Eds.)
-
Wang H., Cruz-Roa A., Basavanhally A., Gilmore H., Shih N., Feldman M., et al. Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection. Medical imaging: digital pathology 2014, vol. 9041. SPIE, San Diego, CA, USA. 10.1117/12.2043902. M.N. Gurcan, A. Madabhushi (Eds.).
-
(2014)
Medical imaging: digital pathology
, vol.9041
-
-
Wang, H.1
Cruz-Roa, A.2
Basavanhally, A.3
Gilmore, H.4
Shih, N.5
Feldman, M.6
-
34
-
-
84923019397
-
Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
-
Wang H., Cruz-Roa A., Basavanhally A., Gilmore H., Shih N., Feldman M., et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging 2014, 1(3):034003. 10.1117/1.jmi.1.3.034003.
-
(2014)
J Med Imaging
, vol.1
, Issue.3
, pp. 034003
-
-
Wang, H.1
Cruz-Roa, A.2
Basavanhally, A.3
Gilmore, H.4
Shih, N.5
Feldman, M.6
-
35
-
-
84885922439
-
Mitosis detection in breast cancer histological images: an ICPR 2012 contest
-
Roux L., Racoceanu D., Loménie N., Kulikova M., Irshad H., Klossa J., et al. Mitosis detection in breast cancer histological images: an ICPR 2012 contest. J Pathol Inform 2013, 4:8. 10.4103/2153-3539.112693.
-
(2013)
J Pathol Inform
, vol.4
, pp. 8
-
-
Roux, L.1
Racoceanu, D.2
Loménie, N.3
Kulikova, M.4
Irshad, H.5
Klossa, J.6
-
37
-
-
77957328823
-
Basal cell and squamous cell skin cancers
-
Miller S., Alam M., Andersen J., Berg D., Bichakjian C., Bowen G., et al. Basal cell and squamous cell skin cancers. J Natl Compr Cancer Netw 2010, 8(8):836-864.
-
(2010)
J Natl Compr Cancer Netw
, vol.8
, Issue.8
, pp. 836-864
-
-
Miller, S.1
Alam, M.2
Andersen, J.3
Berg, D.4
Bichakjian, C.5
Bowen, G.6
-
39
-
-
45449092993
-
A semantic content-based retrieval method for histopathology images
-
Springer, Berlin, Heidelberg/Harbin, China, H. Li, T. Liu, W.-Y. Ma, T. Sakai, K.-F. Wong, G. Zhou (Eds.)
-
Caicedo J., González F., Romero E. A semantic content-based retrieval method for histopathology images. Information retrieval technology, vol. 4993 of lecture notes in computer science 2008, 51-60. Springer, Berlin, Heidelberg/Harbin, China. 10.1007/978-3-540-68636-1_6. H. Li, T. Liu, W.-Y. Ma, T. Sakai, K.-F. Wong, G. Zhou (Eds.).
-
(2008)
Information retrieval technology, vol. 4993 of lecture notes in computer science
, pp. 51-60
-
-
Caicedo, J.1
González, F.2
Romero, E.3
-
40
-
-
70350235061
-
Histopathology image classification using bag of features and kernel functions
-
Springer, Berlin, Heidelberg/Verona, Italy, C. Combi, Y. Shahar, A. Abu-Hanna (Eds.)
-
Caicedo J., Cruz-Roa A., González F. Histopathology image classification using bag of features and kernel functions. Artificial intelligence in medicine, vol. 5651 of lecture notes in computer science 2009, 126-135. Springer, Berlin, Heidelberg/Verona, Italy. 10.1007/978-3-642-02976-9_17. C. Combi, Y. Shahar, A. Abu-Hanna (Eds.).
-
(2009)
Artificial intelligence in medicine, vol. 5651 of lecture notes in computer science
, pp. 126-135
-
-
Caicedo, J.1
Cruz-Roa, A.2
González, F.3
-
41
-
-
79959713937
-
Visual pattern mining in histology image collections using bag of features
-
Cruz-Roa A., Caicedo J., González F. Visual pattern mining in histology image collections using bag of features. Artif Intell Med 2011, 52(2):91-106. 10.1016/j.artmed.2011.04.010.
-
(2011)
Artif Intell Med
, vol.52
, Issue.2
, pp. 91-106
-
-
Cruz-Roa, A.1
Caicedo, J.2
González, F.3
-
42
-
-
78649977269
-
Histopathological image classification using stain component features on a pLSA model
-
Springer, Berlin, Heidelberg/Sao Paulo, Brazil, I. Bloch, R. Cesar (Eds.)
-
Díaz G., Romero E. Histopathological image classification using stain component features on a pLSA model. Progress in pattern recognition, image analysis, computer vision, and applications, vol. 6419 of lecture notes in computer science 2010, 55-62. Springer, Berlin, Heidelberg/Sao Paulo, Brazil. 10.1007/978-3-642-16687-7_12. I. Bloch, R. Cesar (Eds.).
-
(2010)
Progress in pattern recognition, image analysis, computer vision, and applications, vol. 6419 of lecture notes in computer science
, pp. 55-62
-
-
Díaz, G.1
Romero, E.2
-
43
-
-
79960678037
-
A framework for semantic analysis of histopathological images using nonnegative matrix factorization
-
Institute of Electrical & Electronics Engineers (IEEE), Manizales, Colombia, L.E. Castillo, N.D. Duque (Eds.)
-
Cruz-Roa A., Díaz G., González F. A framework for semantic analysis of histopathological images using nonnegative matrix factorization. 6th Colombian computing congress (CCC) 2011, 1-7. Institute of Electrical & Electronics Engineers (IEEE), Manizales, Colombia. 10.1109/COLOMCC.2011.5936285. L.E. Castillo, N.D. Duque (Eds.).
-
(2011)
6th Colombian computing congress (CCC)
, pp. 1-7
-
-
Cruz-Roa, A.1
Díaz, G.2
González, F.3
-
44
-
-
84865591484
-
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
-
Cruz-Roa A., Díaz G., Romero E., González F.A. Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. J Pathol Inform 2011, 2(2). 10.4103/2153-3539.92031.
-
(2011)
J Pathol Inform
, vol.2
, Issue.2
-
-
Cruz-Roa, A.1
Díaz, G.2
Romero, E.3
González, F.A.4
-
45
-
-
79953089752
-
A supervised visual model for finding regions of interest in basal cell carcinoma images
-
Gutiérrez R., Gómez F., Roa-Peña L., Romero E. A supervised visual model for finding regions of interest in basal cell carcinoma images. Diagn Pathol 2011, 6:26. 10.1186/1746-1596-6-26.
-
(2011)
Diagn Pathol
, vol.6
, pp. 26
-
-
Gutiérrez, R.1
Gómez, F.2
Roa-Peña, L.3
Romero, E.4
-
46
-
-
84857359522
-
Micro-structural tissue analysis for automatic histopathological image annotation
-
Díaz G., Romero E. Micro-structural tissue analysis for automatic histopathological image annotation. Microsc Res Tech 2011, 75(3):343-358. 10.1002/jemt.21063.
-
(2011)
Microsc Res Tech
, vol.75
, Issue.3
, pp. 343-358
-
-
Díaz, G.1
Romero, E.2
-
47
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Springer, Berlin, Heidelberg/Nagoya, Japan, K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab (Eds.)
-
Cruz-Roa A., Arevalo J., Madabhushi A., González F. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Medical image computing and computer-assisted intervention - MICCAI, vol. 8150 of lecture notes in computer science 2013, 403-410. Springer, Berlin, Heidelberg/Nagoya, Japan. 10.1007/978-3-642-40763-5_50. K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab (Eds.).
-
(2013)
Medical image computing and computer-assisted intervention - MICCAI, vol. 8150 of lecture notes in computer science
, pp. 403-410
-
-
Cruz-Roa, A.1
Arevalo, J.2
Madabhushi, A.3
González, F.4
-
48
-
-
84891279182
-
Hybrid image representation learning model with invariant features for basal cell carcinoma detection
-
SPIE, Mexico City, Mexico, J. Brieva, B. Escalante-Ramírez (Eds.)
-
Arevalo J., Cruz-Roa A., González F. Hybrid image representation learning model with invariant features for basal cell carcinoma detection. IX international seminar on medical information processing and analysis 2013, SPIE, Mexico City, Mexico. 10.1117/12.2035530. J. Brieva, B. Escalante-Ramírez (Eds.).
-
(2013)
IX international seminar on medical information processing and analysis
-
-
Arevalo, J.1
Cruz-Roa, A.2
González, F.3
-
50
-
-
85162310599
-
ICA with reconstruction cost for efficient overcomplete feature learning
-
Curran Associates, Inc. J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Eds.)
-
Le Q., Karpenko A., Ngiam J., Ng A. ICA with reconstruction cost for efficient overcomplete feature learning. Advances in neural information processing systems 24 2011, 1017-1025. Curran Associates, Inc. J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Eds.).
-
(2011)
Advances in neural information processing systems 24
, pp. 1017-1025
-
-
Le, Q.1
Karpenko, A.2
Ngiam, J.3
Ng, A.4
-
51
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
Liu D., Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program 1989, 45(1-3):503-528. 10.1007/BF01589116.
-
(1989)
Math Program
, vol.45
, Issue.1-3
, pp. 503-528
-
-
Liu, D.1
Nocedal, J.2
-
52
-
-
84897484337
-
Deep learning with cots hpc systems
-
S. Dasgupta, D. Mcallester (Eds.)
-
Coates A., Huval B., Wang T., Wu D., Catanzaro B., Andrew N. Deep learning with cots hpc systems. Proceedings of the 30th international conference on machine learning, no. 3, JMLR workshop and conference proceedings 2013, S. Dasgupta, D. Mcallester (Eds.).
-
(2013)
Proceedings of the 30th international conference on machine learning, no. 3, JMLR workshop and conference proceedings
-
-
Coates, A.1
Huval, B.2
Wang, T.3
Wu, D.4
Catanzaro, B.5
Andrew, N.6
-
53
-
-
84958489906
-
What the statistics of natural images tell us about visual coding
-
International Society for Optics and Photonics, SPIE, Los Angeles, USA, B.E. Rogowitz (Ed.)
-
Field D.J. What the statistics of natural images tell us about visual coding. Human vision, visual processing, and digital display 1989, 269-276. International Society for Optics and Photonics, SPIE, Los Angeles, USA. 10.1117/12.952724. B.E. Rogowitz (Ed.).
-
(1989)
Human vision, visual processing, and digital display
, pp. 269-276
-
-
Field, D.J.1
-
54
-
-
33745155436
-
A bayesian hierarchical model for learning natural scene categories
-
Institute of Electrical & Electronics Engineers (IEEE), San Diego, CA, USA, C. Schmid, S. Soatto, C. Tomas (Eds.)
-
Fei-Fei L., Perona P A bayesian hierarchical model for learning natural scene categories. IEEE computer society conference on computer vision and pattern recognition 2005, vol. 2:524-531. Institute of Electrical & Electronics Engineers (IEEE), San Diego, CA, USA. 10.1109/CVPR.2005.16. C. Schmid, S. Soatto, C. Tomas (Eds.).
-
(2005)
IEEE computer society conference on computer vision and pattern recognition
, vol.2
, pp. 524-531
-
-
Fei-Fei, L.1
Perona, P.2
-
55
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86(11):2278-2324. 10.1109/5.726791.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
56
-
-
35248866563
-
Multi-category classification by soft-max combination of binary classifiers
-
Springer, Berlin, Heidelberg/Guildford, UK, T. Windeatt, F. Roli (Eds.)
-
Duan K., Keerthi S., Chu W., Shevade S., Poo A.N. Multi-category classification by soft-max combination of binary classifiers. Multiple classifier systems, vol. 2709 of lecture notes in computer science 2003, 125-134. Springer, Berlin, Heidelberg/Guildford, UK. 10.1007/3-540-44938-8_13. T. Windeatt, F. Roli (Eds.).
-
(2003)
Multiple classifier systems, vol. 2709 of lecture notes in computer science
, pp. 125-134
-
-
Duan, K.1
Keerthi, S.2
Chu, W.3
Shevade, S.4
Poo, A.N.5
-
60
-
-
84862283411
-
An analysis of single-layer network in unsupervised feature learning
-
JMLR W&CP, Ft. Lauderdale, FL, USA, G. Gordon, D. Dunson, M. Dudík (Eds.)
-
Coates A., Lee H., Ng A. An analysis of single-layer network in unsupervised feature learning. Proceedings of the fourteenth international conference on artificial intelligence and statistics 2010, 215-223. JMLR W&CP, Ft. Lauderdale, FL, USA. G. Gordon, D. Dunson, M. Dudík (Eds.).
-
(2010)
Proceedings of the fourteenth international conference on artificial intelligence and statistics
, pp. 215-223
-
-
Coates, A.1
Lee, H.2
Ng, A.3
-
61
-
-
84867711674
-
Learning invariant feature hierarchies
-
Springer, Berlin, Heidelberg/Florence, Italy, A. Fusiello, V. Murino, R. Cucchiara (Eds.)
-
LeCun Y. Learning invariant feature hierarchies. Computer vision - ECCV. Workshops and demonstrations, vol. 7583 of lecture notes in computer science 2012, 496-505. Springer, Berlin, Heidelberg/Florence, Italy. 10.1007/978-3-642-33863-2_51. A. Fusiello, V. Murino, R. Cucchiara (Eds.).
-
(2012)
Computer vision - ECCV. Workshops and demonstrations, vol. 7583 of lecture notes in computer science
, pp. 496-505
-
-
LeCun, Y.1
-
62
-
-
0030832881
-
The "independent components" of natural scenes are edge filters
-
Bell A., Sejnowski T. The "independent components" of natural scenes are edge filters. Vis Res 1997, 37(23):3327.
-
(1997)
Vis Res
, vol.37
, Issue.23
, pp. 3327
-
-
Bell, A.1
Sejnowski, T.2
-
63
-
-
0035409349
-
Topographic independent component analysis
-
Hyvärinen A., Hoyer P.O., Inki M. Topographic independent component analysis. Neural Comput 2001, 13(7):1527-1558. 10.1162/089976601750264992.
-
(2001)
Neural Comput
, vol.13
, Issue.7
, pp. 1527-1558
-
-
Hyvärinen, A.1
Hoyer, P.O.2
Inki, M.3
-
64
-
-
84872539491
-
A visual latent semantic approach for automatic analysis and interpretation of anaplastic medulloblastoma virtual slides
-
Springer, Berlin, Heidelberg/Nice, France, N. Ayache, H. Delingette, P. Golland, K. Mori (Eds.)
-
Cruz-Roa A., González F., Galaro J., Judkins A., Ellison D., Baccon J., et al. A visual latent semantic approach for automatic analysis and interpretation of anaplastic medulloblastoma virtual slides. Medical image computing and computer-assisted intervention - MICCAI, vol. 7510 of lecture notes in computer science 2012, 157-164. Springer, Berlin, Heidelberg/Nice, France. 10.1007/978-3-642-33415-3_20. N. Ayache, H. Delingette, P. Golland, K. Mori (Eds.).
-
(2012)
Medical image computing and computer-assisted intervention - MICCAI, vol. 7510 of lecture notes in computer science
, pp. 157-164
-
-
Cruz-Roa, A.1
González, F.2
Galaro, J.3
Judkins, A.4
Ellison, D.5
Baccon, J.6
-
65
-
-
34547971961
-
Self-taught learning: transfer learning from unlabeled data
-
ACM, New York, USA, Z. Ghahramani (Ed.)
-
Raina R., Battle A., Lee H., Packer B., Ng A. Self-taught learning: transfer learning from unlabeled data. Proceedings of the 24th international conference on machine learning, ICML '07 2007, 759-766. ACM, New York, USA. 10.1145/1273496.1273592. Z. Ghahramani (Ed.).
-
(2007)
Proceedings of the 24th international conference on machine learning, ICML '07
, pp. 759-766
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.5
-
66
-
-
85161980001
-
Sparse deep belief net model for visual area v2
-
Curran Associates, Inc. J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.)
-
Lee H., Ekanadham C., Ng A.Y. Sparse deep belief net model for visual area v2. Advances in neural information processing systems 20 2008, 873-880. Curran Associates, Inc. J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.).
-
(2008)
Advances in neural information processing systems 20
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
67
-
-
0014758033
-
Cell proliferation in human basal cell carcinoma
-
Weinstein G., Frost P. Cell proliferation in human basal cell carcinoma. Cancer Res 1970, 30(3):724-728.
-
(1970)
Cancer Res
, vol.30
, Issue.3
, pp. 724-728
-
-
Weinstein, G.1
Frost, P.2
-
68
-
-
84913580146
-
Caffe, Convolutional architecture for fast feature embedding
-
ACM, New York, NY, USA, Y. Cai, W. Tavanapong (Eds.)
-
Jia Y., Shelhamer E., Donahue J., Karayev S., Long J., Girshick R., et al. Caffe, Convolutional architecture for fast feature embedding. Proceedings of the ACM international conference on multimedia, MM '14 2014, 675-678. ACM, New York, NY, USA. 10.1145/2647868.2654889. Y. Cai, W. Tavanapong (Eds.).
-
(2014)
Proceedings of the ACM international conference on multimedia, MM '14
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
-
69
-
-
84893401626
-
-
arXiv preprint arXiv:13084214
-
Goodfellow I.J., Warde-Farley D., Lamblin P., Dumoulin V., Mirza M., Pascanu R., et al. Pylearn2: a machine learning research library 2013, arXiv preprint arXiv:13084214.
-
(2013)
Pylearn2: a machine learning research library
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
-
70
-
-
84937128961
-
Torch7. A matlab-like environment for machine learning
-
NIPS, Granada, Spain, J. Gonzalez, S. Singh (Eds.)
-
Collobert R., Kavukcuoglu K., Farabet C. Torch7. A matlab-like environment for machine learning. BigLearn, NIPS workshop, no. EPFL-CONF-192376 2011, NIPS, Granada, Spain. J. Gonzalez, S. Singh (Eds.).
-
(2011)
BigLearn, NIPS workshop, no. EPFL-CONF-192376
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
71
-
-
84930572185
-
-
arXiv preprint arXiv:150102876
-
Wu R., Yan S., Shan Y., Dang Q., Sun G. Deep image: scaling up image recognition 2015, arXiv preprint arXiv:150102876.
-
(2015)
Deep image: scaling up image recognition
-
-
Wu, R.1
Yan, S.2
Shan, Y.3
Dang, Q.4
Sun, G.5
-
72
-
-
84877760312
-
Large scale distributed deep networks
-
Curran Associates, Inc. F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.)
-
Dean J., Corrado G., Monga R., Chen K., Devin M., Mao M., et al. Large scale distributed deep networks. Advances in neural information processing systems 25 2012, 1223-1231. Curran Associates, Inc. F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.).
-
(2012)
Advances in neural information processing systems 25
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
|