메뉴 건너뛰기




Volumn 89, Issue 1, 2012, Pages 347-354

Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm

Author keywords

Evolutionary algorithms; Synoptic pressure patterns; Wind rose reconstruction

Indexed keywords

SPEED; WIND EFFECTS;

EID: 80053321201     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2011.07.044     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • Torres J.L., García A., De Blas M., De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy 2005, 79:65-77.
    • (2005) Solar Energy , vol.79 , pp. 65-77
    • Torres, J.L.1    García, A.2    De Blas, M.3    De Francisco, A.4
  • 2
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • Khashei M., Bijari M., Raissi-Ardali G. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72(4-6):956-967.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi-Ardali, G.3
  • 3
    • 71849084254 scopus 로고    scopus 로고
    • A methodology to generate statistically dependent wind speed scenarios
    • Morales J.M., Minguez R., Conejo A.J. A methodology to generate statistically dependent wind speed scenarios. Appl Energy 2010, 87(3):843-855.
    • (2010) Appl Energy , vol.87 , Issue.3 , pp. 843-855
    • Morales, J.M.1    Minguez, R.2    Conejo, A.J.3
  • 4
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88(4):1405-1414.
    • (2011) Appl Energy , vol.88 , Issue.4 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 5
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • Liu H., Erdem E., Shi J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy 2011, 88(3):724-732.
    • (2011) Appl Energy , vol.88 , Issue.3 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 6
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87(3):934-942.
    • (2010) Appl Energy , vol.87 , Issue.3 , pp. 934-942
    • Fadare, D.A.1
  • 7
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: a review
    • Mellit A., Kalogirou S.A., Hontoria L., Shaari S. Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Combust Sci 2009, 34(5):406-419.
    • (2009) Prog Energy Combust Sci , vol.34 , Issue.5 , pp. 406-419
    • Mellit, A.1    Kalogirou, S.A.2    Hontoria, L.3    Shaari, S.4
  • 8
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87(7):2313-2320.
    • (2010) Appl Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 9
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long-term wind speed and power prediction
    • Barbounis T.G., Theocharis J.B. Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 2006, 69(4-6):466-496.
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 466-496
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 10
    • 74449091026 scopus 로고    scopus 로고
    • Application of Bayesian model averaging in modeling long-term wind speed distributions
    • Li G., Shi J. Application of Bayesian model averaging in modeling long-term wind speed distributions. Renew Energy 2010, 35(6):1192-1202.
    • (2010) Renew Energy , vol.35 , Issue.6 , pp. 1192-1202
    • Li, G.1    Shi, J.2
  • 11
    • 79959826777 scopus 로고    scopus 로고
    • Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    • Mohandes M., Rehman S., Rahman S.M. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 2011, 88(11):4024-4032.
    • (2011) Appl Energy , vol.88 , Issue.11 , pp. 4024-4032
    • Mohandes, M.1    Rehman, S.2    Rahman, S.M.3
  • 13
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • Bouzgou H., Benoudjit N. Multiple architecture system for wind speed prediction. Appl Energy 2011, 88(7):2463-2471.
    • (2011) Appl Energy , vol.88 , Issue.7 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 14
    • 78149362385 scopus 로고    scopus 로고
    • Comparative study of speed estimators with highly noisy measurement signals for wind energy generation systems
    • Carranza O., Figueres E., Garcera G., Gonzalez L.G. Comparative study of speed estimators with highly noisy measurement signals for wind energy generation systems. Appl Energy 2011, 88(3):805-813.
    • (2011) Appl Energy , vol.88 , Issue.3 , pp. 805-813
    • Carranza, O.1    Figueres, E.2    Garcera, G.3    Gonzalez, L.G.4
  • 15
    • 0033668633 scopus 로고    scopus 로고
    • Circulation weather types and their influence on the precipitation regime in Portugal
    • Trigo R.M., DaCamara C.C. Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 2000, 20:1559-1581.
    • (2000) Int J Climatol , vol.20 , pp. 1559-1581
    • Trigo, R.M.1    DaCamara, C.C.2
  • 16
    • 33645550641 scopus 로고    scopus 로고
    • Understanding precipitation changes in Iberia in early spring: weather typing and storm tracking approaches
    • Paredes D., Trigo R.M., García-Herrera R., Trigo I.F. Understanding precipitation changes in Iberia in early spring: weather typing and storm tracking approaches. J Hydrometeorol 2006, 7:101-113.
    • (2006) J Hydrometeorol , vol.7 , pp. 101-113
    • Paredes, D.1    Trigo, R.M.2    García-Herrera, R.3    Trigo, I.F.4
  • 17
    • 47549107415 scopus 로고    scopus 로고
    • Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China
    • Chen Z.H., Cheng S.Y., Li J.B., Guo X.R., Wang W.H., Chen D.S. Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China. Atmos Environ 2008, 42(24):6078-6087.
    • (2008) Atmos Environ , vol.42 , Issue.24 , pp. 6078-6087
    • Chen, Z.H.1    Cheng, S.Y.2    Li, J.B.3    Guo, X.R.4    Wang, W.H.5    Chen, D.S.6
  • 18
    • 76049116449 scopus 로고    scopus 로고
    • Optimization of wind turbine energy and power factor with an evolutionary computation algorithm
    • Kusiak A., Zheng H. Optimization of wind turbine energy and power factor with an evolutionary computation algorithm. Energy 2010, 35(3):1324-1332.
    • (2010) Energy , vol.35 , Issue.3 , pp. 1324-1332
    • Kusiak, A.1    Zheng, H.2
  • 19
    • 0346398332 scopus 로고    scopus 로고
    • Optimization of solar systems using artificial neural-networks and genetic algorithms
    • Kalogirou S.A. Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl Energy 2004, 77(4):383-405.
    • (2004) Appl Energy , vol.77 , Issue.4 , pp. 383-405
    • Kalogirou, S.A.1
  • 20
    • 76449115806 scopus 로고    scopus 로고
    • Genetic k-means algorithm based RBF network for photovoltaic MPP prediction
    • Liao C.C. Genetic k-means algorithm based RBF network for photovoltaic MPP prediction. Energy 2010, 35(2):529-536.
    • (2010) Energy , vol.35 , Issue.2 , pp. 529-536
    • Liao, C.C.1
  • 21
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • Jursa R., Rohrig K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 2008, 24:694-709.
    • (2008) Int J Forecast , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 22
    • 77956877610 scopus 로고    scopus 로고
    • A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis
    • Vaisakh K., Srinivas L.R. A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis. Energy 2010, 35(8):3155-3171.
    • (2010) Energy , vol.35 , Issue.8 , pp. 3155-3171
    • Vaisakh, K.1    Srinivas, L.R.2
  • 24
    • 0032685734 scopus 로고    scopus 로고
    • Evolutionary programming made faster
    • Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans Evol Comput 1999, 3(2):82-102.
    • (1999) IEEE Trans Evol Comput , vol.3 , Issue.2 , pp. 82-102
    • Yao, X.1    Liu, Y.2    Lin, G.3
  • 25
    • 1542273610 scopus 로고    scopus 로고
    • Evolutionary programming using the mutations based on the Lévy probability distribution
    • Lee C.Y., Yao X. Evolutionary programming using the mutations based on the Lévy probability distribution. IEEE Trans Evolut Comput 2004, 8(1):1-13.
    • (2004) IEEE Trans Evolut Comput , vol.8 , Issue.1 , pp. 1-13
    • Lee, C.Y.1    Yao, X.2
  • 26
    • 0036778942 scopus 로고    scopus 로고
    • A new evolutionary approach to cutting stock problems with and without contiguity
    • Liang K.H., Yao X., Newton C.S., Hoffman D. A new evolutionary approach to cutting stock problems with and without contiguity. Comput Operat Res 2002, 29(12):1641-1659.
    • (2002) Comput Operat Res , vol.29 , Issue.12 , pp. 1641-1659
    • Liang, K.H.1    Yao, X.2    Newton, C.S.3    Hoffman, D.4
  • 27
    • 84881374634 scopus 로고    scopus 로고
    • .
    • http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.