메뉴 건너뛰기




Volumn 10, Issue 7, 2017, Pages 873-883

Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models

Author keywords

Environmental management; Prediction modeling; Regression methods; Soft computing techniques

Indexed keywords

ACCURACY ASSESSMENT; ANALYTICAL METHOD; ATMOSPHERIC MODELING; ATMOSPHERIC POLLUTION; CONCENTRATION (COMPOSITION); ENVIRONMENTAL MANAGEMENT; ERROR ANALYSIS; MULTIVARIATE ANALYSIS; NUMERICAL MODEL; PREDICTION; REGRESSION ANALYSIS; SULFUR DIOXIDE; SUPPORT VECTOR MACHINE;

EID: 85017432781     PISSN: 18739318     EISSN: 18739326     Source Type: Journal    
DOI: 10.1007/s11869-017-0477-9     Document Type: Article
Times cited : (70)

References (53)
  • 1
    • 77649101016 scopus 로고    scopus 로고
    • A neural network-based approach for the prediction of urban SO2 concentrations in the Istanbul metropolitan area
    • COI: 1:CAS:528:DC%2BC3cXjsleitrY%3D
    • Akkoyunlu A, Yetilmezsoy K, Erturk F, Oztemel E (2010) A neural network-based approach for the prediction of urban SO2 concentrations in the Istanbul metropolitan area. Int J Environ Pollut 40(4):301–321
    • (2010) Int J Environ Pollut , vol.40 , Issue.4 , pp. 301-321
    • Akkoyunlu, A.1    Yetilmezsoy, K.2    Erturk, F.3    Oztemel, E.4
  • 2
    • 78049531014 scopus 로고    scopus 로고
    • Bankruptcy forecasting: a hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS)
    • Andres JD, Lorca P, Juez FJ, Sánchez-Lasheras F (2010) Bankruptcy forecasting: a hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Syst Appl 38:1866–1875
    • (2010) Expert Syst Appl , vol.38 , pp. 1866-1875
    • Andres, J.D.1    Lorca, P.2    Juez, F.J.3    Sánchez-Lasheras, F.4
  • 6
    • 78751621903 scopus 로고    scopus 로고
    • Neural visualization of network traffic data for intrusion detection
    • CrossRef
    • Corchado E, Herrero E (2011) Neural visualization of network traffic data for intrusion detection. Appl Soft Comput 11(2):2042–2056 CrossRef
    • (2011) Appl Soft Comput , vol.11 , Issue.2 , pp. 2042-2056
    • Corchado, E.1    Herrero, E.2
  • 7
    • 79954556565 scopus 로고    scopus 로고
    • Soft computing models to identify typical meteorological days
    • MathSciNetCrossRef
    • Corchado E, Arroyo A, Tricio V (2011) Soft computing models to identify typical meteorological days. Logic J IGPL 19(2):373–383 MathSciNetCrossRef
    • (2011) Logic J IGPL , vol.19 , Issue.2 , pp. 373-383
    • Corchado, E.1    Arroyo, A.2    Tricio, V.3
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 71549124103 scopus 로고    scopus 로고
    • Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior
    • Etemad-Shahidi A, Mahjoobi J (2009) Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng 36:1175–1181. doi:10.1016/j.oceaneng.2009.08.008
    • (2009) Ocean Eng , vol.36 , pp. 1175-1181
    • Etemad-Shahidi, A.1    Mahjoobi, J.2
  • 12
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67
    • (1991) Ann Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 13
    • 33845956850 scopus 로고    scopus 로고
    • Wintertime aerosol properties during foggy and nonfoggy days over Urban Center Delhi and their implications for shortwave radiative forcing
    • Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and nonfoggy days over Urban Center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. doi:10.1029/2005JD007029
    • (2006) J Geophys Res , vol.111
    • Ganguly, D.1    Jayaraman, A.2    Rajesh, T.A.3    Gadhavi, H.4
  • 15
    • 0142257917 scopus 로고    scopus 로고
    • Present scenario of air quality in Delhi: a case study of CNG implementation
    • Goyal P (2003) Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos Environ 37(38):5423–5431
    • (2003) Atmos Environ , vol.37 , Issue.38 , pp. 5423-5431
    • Goyal, P.1
  • 16
    • 84898464831 scopus 로고    scopus 로고
    • Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
    • Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert 516 Syst Appl 41(11):5267–5276
    • (2014) Expert 516 Syst Appl , vol.41 , Issue.11 , pp. 5267-5276
    • Goyal, M.K.1    Bharti, B.2    Quilty, J.3    Adamowski, J.4    Pandey, A.5
  • 17
    • 4544223559 scopus 로고    scopus 로고
    • Emission estimates and trends (1990–2000) for megacity Delhi and implications
    • COI: 1:CAS:528:DC%2BD2cXnsVGjsbg%3D
    • Gurjar BR, Van Aardenne JA, Lelieveld J, Mohan M (2004) Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos Environ 38(33):5663–5681
    • (2004) Atmos Environ , vol.38 , Issue.33 , pp. 5663-5681
    • Gurjar, B.R.1    Van Aardenne, J.A.2    Lelieveld, J.3    Mohan, M.4
  • 19
    • 79751525117 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using linear genetic programming technique
    • Guven A, Kisi O (2011) Daily pan evaporation modeling using linear genetic programming technique. Irrig Sci 29(2):135–145
    • (2011) Irrig Sci , vol.29 , Issue.2 , pp. 135-145
    • Guven, A.1    Kisi, O.2
  • 20
    • 84865479667 scopus 로고    scopus 로고
    • Pan evaporation modeling using neural computing approach for different climatic zones
    • Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26(11):3231–3249
    • (2012) Water Resour Manag , vol.26 , Issue.11 , pp. 3231-3249
    • Kim, S.1    Shiri, J.2    Kisi, O.3
  • 21
    • 84932605982 scopus 로고    scopus 로고
    • Predicting daily pan evaporation by soft computing models with limited climatic data
    • Kim S, Shiri J, Singh VP, Kisi Ö, Landeras G (2015) Predicting daily pan evaporation by soft computing models with limited climatic data. Hydrol Sci J 60(6):1120–1136
    • (2015) Hydrol Sci J , vol.60 , Issue.6 , pp. 1120-1136
    • Kim, S.1    Shiri, J.2    Singh, V.P.3    Kisi, Ö.4    Landeras, G.5
  • 22
    • 61749102355 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks
    • Kisi O (2009a) Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol Process 23(2):213–223
    • (2009) Hydrol Process , vol.23 , Issue.2 , pp. 213-223
    • Kisi, O.1
  • 23
    • 77949279267 scopus 로고    scopus 로고
    • Fuzzy genetic approach for modeling reference evapotranspiration
    • Kisi O (2009b) Fuzzy genetic approach for modeling reference evapotranspiration. J irrig 538 drainage eng 136(3):175–183
    • (2009) J irrig 538 drainage eng , vol.136 , Issue.3 , pp. 175-183
    • Kisi, O.1
  • 24
    • 84934325903 scopus 로고    scopus 로고
    • Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree
    • Kisi O (2015) Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 528:312–320
    • (2015) J Hydrol , vol.528 , pp. 312-320
    • Kisi, O.1
  • 25
    • 84880034929 scopus 로고    scopus 로고
    • Fuzzy genetic approach for estimating reference evapotranspiration of Turkey: Mediterranean region
    • Kisi O, Cengiz TM (2013) Fuzzy genetic approach for estimating reference evapotranspiration of Turkey: Mediterranean region. Water Resour Manag 27:3541–3553
    • (2013) Water Resour Manag , vol.27 , pp. 3541-3553
    • Kisi, O.1    Cengiz, T.M.2
  • 26
    • 84953791253 scopus 로고    scopus 로고
    • Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution
    • Kisi, O and Parmar, K. S, 2016. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrology.
    • (2016) J Hydrology
    • Kisi, O.1    Parmar, K.S.2
  • 27
    • 84871475008 scopus 로고    scopus 로고
    • Modeling monthly pan evaporations using fuzzy genetic approach
    • Kisi O, Tombul M (2013) Modeling monthly pan evaporations using fuzzy genetic approach. J Hydrol 477:203–212
    • (2013) J Hydrol , vol.477 , pp. 203-212
    • Kisi, O.1    Tombul, M.2
  • 28
    • 84960423143 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree
    • Kisi O, Genc O, Dinc S, Zounemat-Kermani M (2016) Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput Elect Agr 122:112–117
    • (2016) Comput Elect Agr , vol.122 , pp. 112-117
    • Kisi, O.1    Genc, O.2    Dinc, S.3    Zounemat-Kermani, M.4
  • 30
    • 0004255908 scopus 로고    scopus 로고
    • The McGraw-Hill Companies, Inc., New York: 414
    • Mitchell TM (1997) Machine learning. The McGraw-Hill Companies, Inc., New York 414
    • (1997) Machine learning
    • Mitchell, T.M.1
  • 31
    • 34347387295 scopus 로고    scopus 로고
    • An analysis of the annual and seasonal trends of air quality index of Delhi
    • COI: 1:CAS:528:DC%2BD2sXmvVaqtb4%3D
    • Mohan M, Kandya A (2007) An analysis of the annual and seasonal trends of air quality index of Delhi. Environ Monit Assess 131(1–3):267–277
    • (2007) Environ Monit Assess , vol.131 , Issue.1-3 , pp. 267-277
    • Mohan, M.1    Kandya, A.2
  • 32
    • 65449173509 scopus 로고    scopus 로고
    • M5 model tree based modelling of reference evapotranspiration
    • Pal M, Deswal S (2009) M5 model tree based modelling of reference evapotranspiration. Hydrol Process 23:1437–1443
    • (2009) Hydrol Process , vol.23 , pp. 1437-1443
    • Pal, M.1    Deswal, S.2
  • 33
    • 84918593436 scopus 로고    scopus 로고
    • River water prediction modeling using neural networks, fuzzy and wavelet coupled model
    • Parmar KS, Bhardwaj R (2014) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manage 29(1):17–33
    • (2014) Water Resour Manage , vol.29 , Issue.1 , pp. 17-33
    • Parmar, K.S.1    Bhardwaj, R.2
  • 34
    • 84959140660 scopus 로고    scopus 로고
    • Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling
    • Parmar KS, Soni K, Kumar N, Kapoor S (2016) Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling. Sci Total Environ:553
    • (2016) Sci Total Environ , vol.553
    • Parmar, K.S.1    Soni, K.2    Kumar, N.3    Kapoor, S.4
  • 35
    • 34547956653 scopus 로고    scopus 로고
    • Aerosol radiative forcing over the Indo-Gangetic Plains during major dust storms
    • Prasad AK, Singh S, Chauhan SS, Srivastava MK, Singh RP, Singh R (2007) Aerosol radiative forcing over the Indo-Gangetic Plains during major dust storms. Atmos Environ 41(6289–6301):2007
    • (2007) Atmos Environ , vol.41 , Issue.6289-6301 , pp. 2007
    • Prasad, A.K.1    Singh, S.2    Chauhan, S.S.3    Srivastava, M.K.4    Singh, R.P.5    Singh, R.6
  • 37
    • 84875464264 scopus 로고    scopus 로고
    • Air pollution in Delhi: its magnitude and effects on health
    • Rizwan SA, Nongkynrith B, Gupta SK (2013) Air pollution in Delhi: its magnitude and effects on health. Indian J Community Med 38:4–8 http://www.ijcm.org.in/text.asp?2013/38/1/4/106617
    • (2013) Indian J Community Med , vol.38 , pp. 4-8
    • Rizwan, S.A.1    Nongkynrith, B.2    Gupta, S.K.3
  • 38
    • 24644524072 scopus 로고    scopus 로고
    • Modeling of SO2 distribution in Istanbul using artificial neural networks
    • Sahin U, Ucan ON, Bayat C, Oztorun N (2005) Modeling of SO2 distribution in Istanbul using artificial neural networks. Environ Model Assess 10:135–142
    • (2005) Environ Model Assess , vol.10 , pp. 135-142
    • Sahin, U.1    Ucan, O.N.2    Bayat, C.3    Oztorun, N.4
  • 39
    • 80052611393 scopus 로고    scopus 로고
    • A new approach to prediction of SO2 and PM10 concentrations in Istanbul, Turkey: cellular neural network (CNN)
    • COI: 1:CAS:528:DC%2BC38Xns1Wrtw%3D%3D
    • Sahin UA, Ucan ON, Bayat C, Tolluoglu O (2011) A new approach to prediction of SO2 and PM10 concentrations in Istanbul, Turkey: cellular neural network (CNN). Environ Forensic 12(3):253–269
    • (2011) Environ Forensic , vol.12 , Issue.3 , pp. 253-269
    • Sahin, U.A.1    Ucan, O.N.2    Bayat, C.3    Tolluoglu, O.4
  • 41
    • 0039595510 scopus 로고    scopus 로고
    • Forecasting recessions: can we do better on MARS?
    • Sephton P (2001) Forecasting recessions: can we do better on MARS? Federal Reserve Bank of St. Louis Rev 83:39–49
    • (2001) Federal Reserve Bank of St. Louis Rev , vol.83 , pp. 39-49
    • Sephton, P.1
  • 42
    • 84953839806 scopus 로고    scopus 로고
    • Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models
    • Shafaei M, Kisi O (2016) Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour Manag 30(1):79–97. doi:10.1007/s11269-015-1147-z
    • (2016) Water Resour Manag , vol.30 , Issue.1 , pp. 79-97
    • Shafaei, M.1    Kisi, O.2
  • 43
    • 24944556439 scopus 로고    scopus 로고
    • Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing
    • Singh S, Nath S, Kohli R, Singh R (2005) Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing. Geophys Res Lett 32:L13808
    • (2005) Geophys Res Lett , vol.32
    • Singh, S.1    Nath, S.2    Kohli, R.3    Singh, R.4
  • 44
    • 77956885921 scopus 로고    scopus 로고
    • Clear-sky direct aerosol radiative forcing variations over mega-city Delhi
    • Singh S, Soni K, Bano T, Tanwar RS, Nath S, Arya BC (2010) Clear-sky direct aerosol radiative forcing variations over mega-city Delhi. Ann Geophys 28:1157–1166
    • (2010) Ann Geophys , vol.28 , pp. 1157-1166
    • Singh, S.1    Soni, K.2    Bano, T.3    Tanwar, R.S.4    Nath, S.5    Arya, B.C.6
  • 45
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola JA, Bernhard S (2004) A tutorial on support vector regression. Stat Comput 14:199–222
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, J.A.1    Bernhard, S.2
  • 46
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine DP, Xue Y (2004) M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China. J Hydrol Eng 9:491–501
    • (2004) J Hydrol Eng , vol.9 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 47
    • 84903716142 scopus 로고    scopus 로고
    • Statistical analysis of aerosols over the Gangetic–Himalayan region using ARIMA model based on long-term MODIS observations
    • COI: 1:CAS:528:DC%2BC2cXhtlCit7zE
    • Soni K, Kapoor S, Parmar KS, Kaskaoutis DG (2014) Statistical analysis of aerosols over the Gangetic–Himalayan region using ARIMA model based on long-term MODIS observations. Atmos Res 149:174–119. doi:10.1016/j.atmosres.2014.05.025
    • (2014) Atmos Res , vol.149 , pp. 119-174
    • Soni, K.1    Kapoor, S.2    Parmar, K.S.3    Kaskaoutis, D.G.4
  • 48
    • 84925501817 scopus 로고    scopus 로고
    • Time series model prediction and trend variability of aerosol optical depth over coal mines in India
    • COI: 1:CAS:528:DC%2BC2cXhs1Ohs73P
    • Soni K, Parmar KS, Kapoor S (2015) Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environ Sci Pollut Res 22:3652–3671
    • (2015) Environ Sci Pollut Res , vol.22 , pp. 3652-3671
    • Soni, K.1    Parmar, K.S.2    Kapoor, S.3
  • 49
    • 0005906715 scopus 로고    scopus 로고
    • Support vector machines: a nonlinear modeling and control perspective
    • Suykens JAK (2001) Support vector machines: a nonlinear modeling and control perspective. Eur J Control 7:311–327
    • (2001) Eur J Control , vol.7 , pp. 311-327
    • Suykens, J.A.K.1
  • 50
    • 0032638628 scopus 로고    scopus 로고
    • Least square support vector machine classifiers
    • Suykens JAK, Vandewalle J (1999) Least square support vector machine classifiers. Neural Process Lett 9:293–300
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 51
    • 84856955910 scopus 로고    scopus 로고
    • Bio-inspired computing for hybrid information technology
    • Vaidya V, Park JH, Arabnia HR, Pedrycz W, Peng S (2012) Bio-inspired computing for hybrid information technology. Soft Comput 16(3):367–368
    • (2012) Soft Comput , vol.16 , Issue.3 , pp. 367-368
    • Vaidya, V.1    Park, J.H.2    Arabnia, H.R.3    Pedrycz, W.4    Peng, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.