메뉴 건너뛰기




Volumn 60, Issue 6, 2015, Pages 1120-1136

Predicting daily pan evaporation by soft computing models with limited climatic data;Prévoir l’évaporation journalière au bac par des modèles flous avec des données climatiques limitées

Author keywords

limited climatic data; Mann Whitney U test; multiple linear regression; pan evaporation; soft computing models

Indexed keywords

CONFORMAL MAPPING; EVAPORATION; FORECASTING; GENE EXPRESSION; LINEAR REGRESSION; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS; POTABLE WATER; REGRESSION ANALYSIS; RESERVOIR MANAGEMENT; RESERVOIRS (WATER); SELF ORGANIZING MAPS; SOFT COMPUTING; STATISTICAL TESTS; THERMAL PROCESSING (FOODS); WATER MANAGEMENT; WATER RESOURCES; WATER SUPPLY; WATER SUPPLY SYSTEMS;

EID: 84932605982     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2014.945937     Document Type: Article
Times cited : (55)

References (55)
  • 2
    • 0027594152 scopus 로고
    • Criteria for evaluation of watershed models
    • ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models, 1993. Criteria for evaluation of watershed models. Journal of Irrigation and Drainage Engineering, 119 (3), 429–442. doi:10.1061/(ASCE)0733-9437(1993)119:3(429).
    • (1993) Journal of Irrigation and Drainage Engineering , vol.119 , Issue.3 , pp. 429-442
  • 4
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • J.M.Bruton,, R.W.McClendon,, and G.Hoogenboom,, 2000. Estimating daily pan evaporation with artificial neural networks. Transactions of the ASAE, 43 (2), 491–496. doi:10.13031/2013.2730.
    • (2000) Transactions of the ASAE , vol.43 , Issue.2 , pp. 491-496
    • Bruton, J.M.1    McClendon, R.W.2    Hoogenboom, G.3
  • 5
    • 77649185559 scopus 로고    scopus 로고
    • Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network
    • F.J.Chang,, et al., 2010. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology, 384 (1–2), 118–129. doi:10.1016/j.jhydrol.2010.01.016.
    • (2010) Journal of Hydrology , vol.384 , Issue.1-2 , pp. 118-129
    • Chang, F.J.1
  • 6
    • 33947502845 scopus 로고    scopus 로고
    • Enforced self-organizing map neural networks for river flood forecasting
    • F.J.Chang,, L.C.Chang,, and Y.S.Wang,, 2007. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes, 21 (6), 741–749. doi:10.1002/hyp.6262.
    • (2007) Hydrological Processes , vol.21 , Issue.6 , pp. 741-749
    • Chang, F.J.1    Chang, L.C.2    Wang, Y.S.3
  • 7
    • 84877578251 scopus 로고    scopus 로고
    • Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan
    • F.J.Chang,, W.Sun,, and C.H.Chung,, 2013. Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan. Hydrological Sciences Journal, 58 (4), 813–825. doi:10.1080/02626667.2013.775447.
    • (2013) Hydrological Sciences Journal , vol.58 , Issue.4 , pp. 813-825
    • Chang, F.J.1    Sun, W.2    Chung, C.H.3
  • 8
    • 0033535419 scopus 로고    scopus 로고
    • Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model
    • B.J.Choudhury,, 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216 (1–2), 99–110. doi:10.1016/S0022-1694(98)00293-5.
    • (1999) Journal of Hydrology , vol.216 , Issue.1-2 , pp. 99-110
    • Choudhury, B.J.1
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • C.W.Dawson, and R.L.Wilby,, 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25 (1), 80–108. doi:10.1177/030913330102500104.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 11
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • C.Ferreira,, 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13 (2), 87–129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 13
    • 0035887375 scopus 로고    scopus 로고
    • A comparison between measured and modelled open water evaporation from a reservoir in south-east England
    • J.W.Finch,, 2001. A comparison between measured and modelled open water evaporation from a reservoir in south-east England. Hydrological Processes, 15, 2771–2778. doi:10.1002/hyp.267.
    • (2001) Hydrological Processes , vol.15 , pp. 2771-2778
    • Finch, J.W.1
  • 14
    • 70349272865 scopus 로고    scopus 로고
    • Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling
    • H.V.Gupta,, et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhydrol.2009.08.003.
    • (2009) Journal of Hydrology , vol.377 , Issue.1-2 , pp. 80-91
    • Gupta, H.V.1
  • 15
    • 79751525117 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using linear genetic programming technique
    • A.Guven, and Ö.Kişi,, 2011. Daily pan evaporation modeling using linear genetic programming technique. Irrigation Science, 29 (2), 135–145. doi:10.1007/s00271-010-0225-5.
    • (2011) Irrigation Science , vol.29 , Issue.2 , pp. 135-145
    • Guven, A.1    Kişi, Ö.2
  • 17
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • K.Hsu,, et al., 2002. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research, 38 (12), 1302. doi:10.1029/2001WR000795.
    • (2002) Water Resources Research , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.1
  • 18
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • S.K.Jain,, P.C.Nayak,, and K.P.Sudheer,, 2008. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes, 22 (13), 2225–2234. doi:10.1002/hyp.6819.
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 19
    • 48849109284 scopus 로고    scopus 로고
    • Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts
    • A.L.Kay, and H.N.Davies,, 2008. Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts. Journal of Hydrology, 358 (3–4), 221–239. doi:10.1016/j.jhydrol.2008.06.005.
    • (2008) Journal of Hydrology , vol.358 , Issue.3-4 , pp. 221-239
    • Kay, A.L.1    Davies, H.N.2
  • 20
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • M.E.Keskin, and Ö.Terzi,, 2006. Artificial neural network models of daily pan evaporation. Journal of Hydrologic Engineering, 11 (1), 65–70. doi:10.1061/(ASCE)1084-0699(2006)11:1(65).
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, Ö.2
  • 21
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • S.Kim, and H.S.Kim,, 2008. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 351 (3–4), 299–317. doi:10.1016/j.jhydrol.2007.12.014.
    • (2008) Journal of Hydrology , vol.351 , Issue.3-4 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 22
    • 84876427289 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using different data-driven methods and lag-time patterns
    • S.Kim,, et al., 2013. Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resources Management, 27 (7), 2267–2286. doi:10.1007/s11269-013-0287-2.
    • (2013) Water Resources Management , vol.27 , Issue.7 , pp. 2267-2286
    • Kim, S.1
  • 23
    • 84932628663 scopus 로고    scopus 로고
    • August, Vancouver: IAHR
    • S.Kim,, J.H.Kim,, and K.B.Park,, 2009. Statistical learning theory for the disaggregation of the climatic data. In: Proceedings of 33rd IAHR Congress 2009, 9–14 August. Vancouver: IAHR, 1154–1162.
    • (2009)
    • Kim, S.1    Kim, J.H.2    Park, K.B.3
  • 24
    • 84865479667 scopus 로고    scopus 로고
    • Pan evaporation modeling using neural computing approach for different climatic zones
    • S.Kim,, J.Shiri,, and O.Kisi,, 2012. Pan evaporation modeling using neural computing approach for different climatic zones. Water Resources Management, 26 (11), 3231–3249. doi:10.1007/s11269-012-0069-2.
    • (2012) Water Resources Management , vol.26 , Issue.11 , pp. 3231-3249
    • Kim, S.1    Shiri, J.2    Kisi, O.3
  • 25
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Ö.Kişi,, 2006. Daily pan evaporation modelling using a neuro-fuzzy computing technique. Journal of Hydrology, 329 (3–4), 636–646. doi:10.1016/j.jhydrol.2006.03.015.
    • (2006) Journal of Hydrology , vol.329 , Issue.3-4 , pp. 636-646
    • Kişi, Ö.1
  • 26
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modelling from climatic data using a neural computing technique
    • O.Kişi,, 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrological Processes, 21, 1925–1934. doi:10.1002/hyp.6403.
    • (2007) Hydrological Processes , vol.21 , pp. 1925-1934
    • Kişi, O.1
  • 27
    • 67849114055 scopus 로고    scopus 로고
    • Modeling monthly evaporation using two different neural computing techniques
    • Ö.Kişi,, 2009. Modeling monthly evaporation using two different neural computing techniques. Irrigation Science, 27 (5), 417–430. doi:10.1007/s00271-009-0158-z.
    • (2009) Irrigation Science , vol.27 , Issue.5 , pp. 417-430
    • Kişi, Ö.1
  • 28
    • 84860363127 scopus 로고    scopus 로고
    • Generalized neurofuzzy models for estimating daily pan evaporation values from weather data
    • O.Kişi,, A.Pour-Ali Baba,, and J.Shiri,, 2012. Generalized neurofuzzy models for estimating daily pan evaporation values from weather data. Journal of Irrigation and Drainage Engineering, 138 (4), 349–362. doi:10.1061/(ASCE)IR.1943-4774.0000403.
    • (2012) Journal of Irrigation and Drainage Engineering , vol.138 , Issue.4 , pp. 349-362
    • Kişi, O.1    Pour-Ali Baba, A.2    Shiri, J.3
  • 29
    • 0025489075 scopus 로고
    • The self-organizing map
    • T.Kohonen,, 1990. The self-organizing map. Proceedings of the IEEE, 78 (9), 1464–1480. doi:10.1109/5.58325.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 32
    • 0036635791 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural networks
    • M.Kumar,, et al., 2002. Estimating evapotranspiration using artificial neural networks. Journal of Irrigation and Drainage Engineering, 128 (4), 224–233. doi:10.1061/(ASCE)0733-9437(2002)128:4(224).
    • (2002) Journal of Irrigation and Drainage Engineering , vol.128 , Issue.4 , pp. 224-233
    • Kumar, M.1
  • 33
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • D.R.Legates, and G.J.McCabe,, 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 34
    • 21344450695 scopus 로고    scopus 로고
    • Time series forecasting by combining the radial basis function network and the self-organizing map
    • G.F.Lin, and L.H.Chen,, 2005. Time series forecasting by combining the radial basis function network and the self-organizing map. Hydrological Processes, 19 (10), 1925–1937. doi:10.1002/hyp.5637.
    • (2005) Hydrological Processes , vol.19 , Issue.10 , pp. 1925-1937
    • Lin, G.F.1    Chen, L.H.2
  • 35
    • 33646564705 scopus 로고    scopus 로고
    • Identification of homogeneous regions for regional frequency analysis using the self-organizing map
    • G.F.Lin, and L.H.Chen,, 2006. Identification of homogeneous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324 (1–4), 1–9. doi:10.1016/j.jhydrol.2005.09.009.
    • (2006) Journal of Hydrology , vol.324 , Issue.1-4 , pp. 1-9
    • Lin, G.F.1    Chen, L.H.2
  • 36
    • 34249662794 scopus 로고    scopus 로고
    • A SOM-based approach to estimating design hyetographs of ungauged sites
    • G.F.Lin, and M.C.Wu,, 2007. A SOM-based approach to estimating design hyetographs of ungauged sites. Journal of Hydrology, 339 (3–4), 216–226. doi:10.1016/j.jhydrol.2007.03.016.
    • (2007) Journal of Hydrology , vol.339 , Issue.3-4 , pp. 216-226
    • Lin, G.F.1    Wu, M.C.2
  • 37
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • G.F.Lin, and M.C.Wu,, 2009. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology, 375 (3–4), 450–458. doi:10.1016/j.jhydrol.2009.06.047.
    • (2009) Journal of Hydrology , vol.375 , Issue.3-4 , pp. 450-458
    • Lin, G.F.1    Wu, M.C.2
  • 39
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I — a discussion of principles
    • J.E.Nash, and J.V.Sutcliffe,, 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 43
    • 34250751393 scopus 로고    scopus 로고
    • Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA
    • D.O.Rosenberry,, et al., 2007. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology, 340 (3–4), 149–166. doi:10.1016/j.jhydrol.2007.03.018.
    • (2007) Journal of Hydrology , vol.340 , Issue.3-4 , pp. 149-166
    • Rosenberry, D.O.1
  • 44
    • 79960111650 scopus 로고    scopus 로고
    • Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (Southwestern Iran)
    • J.Shiri, and Ö.Kişi,, 2011. Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (Southwestern Iran). Journal of Irrigation and Drainage Engineering, 137 (7), 412–425. doi:10.1061/(ASCE)IR.1943-4774.0000315.
    • (2011) Journal of Irrigation and Drainage Engineering , vol.137 , Issue.7 , pp. 412-425
    • Shiri, J.1    Kişi, Ö.2
  • 45
    • 82455186243 scopus 로고    scopus 로고
    • Estimating daily pan evaporation from climatic data of the state of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
    • J.Shiri,, et al., 2011. Estimating daily pan evaporation from climatic data of the state of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 42 (6), 491–502. doi:10.2166/nh.2011.020.
    • (2011) Hydrology Research , vol.42 , Issue.6 , pp. 491-502
    • Shiri, J.1
  • 46
    • 84891740394 scopus 로고    scopus 로고
    • Evaluation of gene expression programming approaches for estimating daily pan evaporation through spatial and temporal data scanning
    • J.Shiri,, P.Marti,, and V.P.Singh,, 2014. Evaluation of gene expression programming approaches for estimating daily pan evaporation through spatial and temporal data scanning. Hydrological Processes, 28 (3), 1215–1225. doi:10.1002/hyp.9669.
    • (2014) Hydrological Processes , vol.28 , Issue.3 , pp. 1215-1225
    • Shiri, J.1    Marti, P.2    Singh, V.P.3
  • 48
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • B.Sivakumar,, A.W.Jayawardena,, and T.M.K.G.Fernando,, 2002. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265 (1–4), 225–245. doi:10.1016/S0022-1694(02)00112-9.
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 49
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • K.P.Sudheer,, et al., 2002. Modelling evaporation using an artificial neural network algorithm. Hydrological Processes, 16 (16), 3189–3202. doi:10.1002/hyp.1096.
    • (2002) Hydrological Processes , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1
  • 50
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • K.P.Sudheer,, A.K.Gosain,, and K.S.Ramasastri,, 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering, 129 (3), 214–218. doi:10.1061/(ASCE)0733-9437(2003)129:3(214).
    • (2003) Journal of Irrigation and Drainage Engineering , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 51
    • 77953692036 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression
    • H.Tabari,, S.Marofi,, and A.A.Sabziparvar,, 2010. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrigation Science, 28 (5), 399–406. doi:10.1007/s00271-009-0201-0.
    • (2010) Irrigation Science , vol.28 , Issue.5 , pp. 399-406
    • Tabari, H.1    Marofi, S.2    Sabziparvar, A.A.3
  • 52
    • 33847037909 scopus 로고    scopus 로고
    • Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate
    • S.B.K.Tan,, E.B.Shuy,, and L.H.C.Chua,, 2007. Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate. Hydrological Processes, 21 (4), 486–499. doi:10.1002/hyp.6251.
    • (2007) Hydrological Processes , vol.21 , Issue.4 , pp. 486-499
    • Tan, S.B.K.1    Shuy, E.B.2    Chua, L.H.C.3
  • 53
    • 33947317194 scopus 로고    scopus 로고
    • Evaporation estimation using gene expression programming
    • Ö.Terzi, and M.Erol Keskin,, 2005. Evaporation estimation using gene expression programming. Journal of Applied Sciences, 5 (3), 508–512. doi:10.3923/jas.2005.508.512.
    • (2005) Journal of Applied Sciences , vol.5 , Issue.3 , pp. 508-512
    • Terzi, Ö.1    Erol Keskin, M.2
  • 54
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • A.S.Tokar, and P.A.Johnson,, 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4 (3), 232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232).
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 55
    • 0035341139 scopus 로고    scopus 로고
    • Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia)
    • C.Vallet-Coulomb,, et al., 2001. Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). Journal of Hydrology, 245 (1–4), 1–18. doi:10.1016/S0022-1694(01)00341-9.
    • (2001) Journal of Hydrology , vol.245 , Issue.1-4 , pp. 1-18
    • Vallet-Coulomb, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.