메뉴 건너뛰기




Volumn 19, Issue 2, 2017, Pages 207-224

Prediction of scour depth around bridge piers using self-adaptive extreme learning machine

Author keywords

Artificial intelligence; Pier scour; SAELM; Self adaptive extreme learning machine; Sensitivity analysis

Indexed keywords


EID: 85016749474     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2016.025     Document Type: Article
Times cited : (58)

References (61)
  • 3
    • 68949103764 scopus 로고    scopus 로고
    • Introducing knowledge into learning based on genetic programming
    • Babovic, V. 2009 Introducing knowledge into learning based on genetic programming. Journal of Hydroinformatics 11, 181-193.
    • (2009) Journal of Hydroinformatics , vol.11 , pp. 181-193
    • Babovic, V.1
  • 5
    • 84899539529 scopus 로고    scopus 로고
    • Protein sequence classification with improved extreme learning machine algorithms
    • Cao, J. & Xiong, L. 2014 Protein sequence classification with improved extreme learning machine algorithms. BioMed Research International 12. doi:10.1155/2014/103054.
    • (2014) BioMed Research International , vol.12
    • Cao, J.1    Xiong, L.2
  • 6
    • 84869885866 scopus 로고    scopus 로고
    • Self-adaptive evolutionary extreme learning machine
    • Cao, J., Lin, Z. & Huang, G. 2012 Self-adaptive evolutionary extreme learning machine. Neural Processing Letters 36, 285-305.
    • (2012) Neural Processing Letters , vol.36 , pp. 285-305
    • Cao, J.1    Lin, Z.2    Huang, G.3
  • 7
    • 0003848805 scopus 로고
    • PhD Thesis, University of Auckland, New Zealand
    • Chiew, Y. 1984 Local Scour at Bridge Piers. PhD Thesis, University of Auckland, New Zealand.
    • (1984) Local Scour at Bridge Piers.
    • Chiew, Y.1
  • 9
    • 85027942599 scopus 로고    scopus 로고
    • Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers
    • Ebtehaj, I. & Bonakdari, H. 2014 Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resources Management 28, 4765-4779.
    • (2014) Water Resources Management , vol.28 , pp. 4765-4779
    • Ebtehaj, I.1    Bonakdari, H.2
  • 10
    • 84937784552 scopus 로고    scopus 로고
    • Gene expression programming to predict the discharge coefficient in rectangular side weirs
    • Ebtehaj, I., Bonakdari, H., Zaji, A. H., Azimi, H. & Sharifi, A. 2015 Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing 35, 618-628.
    • (2015) Applied Soft Computing , vol.35 , pp. 618-628
    • Ebtehaj, I.1    Bonakdari, H.2    Zaji, A.H.3    Azimi, H.4    Sharifi, A.5
  • 11
    • 84948144819 scopus 로고    scopus 로고
    • A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer
    • Ebtehaj, I., Bonakdari, H., Shamshirband, S. & Mohammadi, K. 2016 A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Measurement and Instrumentation 47, 19-27.
    • (2016) Flow Measurement and Instrumentation , vol.47 , pp. 19-27
    • Ebtehaj, I.1    Bonakdari, H.2    Shamshirband, S.3    Mohammadi, K.4
  • 13
    • 77956618089 scopus 로고    scopus 로고
    • Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel
    • Emiroglu, M. E., Bilhan, O. & Kisi, O. 2011 Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel. Expert Systems with Applications 38, 867-874.
    • (2011) Expert Systems with Applications , vol.38 , pp. 867-874
    • Emiroglu, M.E.1    Bilhan, O.2    Kisi, O.3
  • 14
    • 84928943797 scopus 로고    scopus 로고
    • Estimation of scour depth around circular piers: Applications of model tree
    • Etemad-Shahidi, A., Bonakdar, L. & Jeng, D. S. 2015 Estimation of scour depth around circular piers: applications of model tree. Journal of Hydroinformatics 17, 226-238.
    • (2015) Journal of Hydroinformatics , vol.17 , pp. 226-238
    • Etemad-Shahidi, A.1    Bonakdar, L.2    Jeng, D.S.3
  • 18
    • 84883561868 scopus 로고    scopus 로고
    • Sensitivity analysis of bridge pier scour depth predictive formulae
    • Gaudio, R., Tafarojnoruz, A. & De Bartolo, S. 2013 Sensitivity analysis of bridge pier scour depth predictive formulae. Journal of Hydroinformatics 15, 939-951.
    • (2013) Journal of Hydroinformatics , vol.15 , pp. 939-951
    • Gaudio, R.1    Tafarojnoruz, A.2    De Bartolo, S.3
  • 19
    • 84856923228 scopus 로고    scopus 로고
    • Pier scour in clear water for sediment mixtures
    • Guo, J. 2012 Pier scour in clear water for sediment mixtures. Journal of Hydraulic Research 50, 18-27.
    • (2012) Journal of Hydraulic Research , vol.50 , pp. 18-27
    • Guo, J.1
  • 22
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G B., Zhu, Q. Y & Siew, C. K. 2006 Extreme learning machine: theory and applications. Neurocomputing 70, 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 24
    • 84901360343 scopus 로고    scopus 로고
    • A cooperative expert based support vector regression (Co-ESVR) system to determine collar dimensions around bridge pier
    • Jahangirzadeh, A., Shamshirband, S., Aghabozorgi, S., Akib, S., Basser, H, Anuar, N. B. & Kiah, M. L. M. 2014 A cooperative expert based support vector regression (Co-ESVR) system to determine collar dimensions around bridge pier. Neurocomputing 140, 172-184.
    • (2014) Neurocomputing , vol.140 , pp. 172-184
    • Jahangirzadeh, A.1    Shamshirband, S.2    Aghabozorgi, S.3    Akib, S.4    Basser, H.5    Anuar, N.B.6    Kiah, M.L.M.7
  • 25
    • 0026931120 scopus 로고
    • Reliability-based pier scour engineering
    • Johnson, R A. 1992 Reliability-based pier scour engineering. Journal of Hydraulic Engineering 118, 1344-1357.
    • (1992) Journal of Hydraulic Engineering , vol.118 , pp. 1344-1357
    • Johnson, R.A.1
  • 28
    • 73249132506 scopus 로고    scopus 로고
    • An alternative approach for investigation of the wave-induced scour around pipelines
    • Kazeminezhad, M. & Etemad-Shahidi, A. 2010 An alternative approach for investigation of the wave-induced scour around pipelines. Journal of Hydroinformatics 12, 51-65.
    • (2010) Journal of Hydroinformatics , vol.12 , pp. 51-65
    • Kazeminezhad, M.1    Etemad-Shahidi, A.2
  • 31
    • 84891844765 scopus 로고    scopus 로고
    • Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis
    • Lian, C, Zeng, Z., Yao, W. & Tang, H. 2014 Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis. Neural Computing and Applications 24, 99-107.
    • (2014) Neural Computing and Applications , vol.24 , pp. 99-107
    • Lian, C.1    Zeng, Z.2    Yao, W.3    Tang, H.4
  • 33
    • 85016734530 scopus 로고
    • Scour at bridge sites
    • (P. N. Cheremisinoff & N. P. Cheremisinoff, eds). Technomic Publishing, Lancaster, PA, USA
    • Melville, B. W. 1988 Scour at bridge sites. In: Civil Engineering Practice, Vol. 2 (P. N. Cheremisinoff & N. P. Cheremisinoff, eds). Technomic Publishing, Lancaster, PA, USA, pp. 327-362.
    • (1988) Civil Engineering Practice , vol.2 , pp. 327-362
    • Melville, B.W.1
  • 34
    • 0004183291 scopus 로고    scopus 로고
    • Water Resources Publications, Highlands Ranch, CO, USA
    • Melville, B. W. & Coleman, S. E. 2000 Bridge Scour. Water Resources Publications, Highlands Ranch, CO, USA.
    • (2000) Bridge Scour
    • Melville, B.W.1    Coleman, S.E.2
  • 38
    • 84939964119 scopus 로고    scopus 로고
    • Neuro-fuzzy GMDH approach to predict longitudinal dispersion in water networks
    • Najafzadeh, M. & Sattar, A. M. 2015 Neuro-fuzzy GMDH approach to predict longitudinal dispersion in water networks. Water Resources Management 29, 2205-2219.
    • (2015) Water Resources Management , vol.29 , pp. 2205-2219
    • Najafzadeh, M.1    Sattar, A.M.2
  • 39
    • 84876262371 scopus 로고    scopus 로고
    • Prediction of water flows in Colorado River, Argentina/Predicción de caudales en río Colorado, Argentina
    • Pierini, J. O, Gómez, E. A. & Telesca, L. 2012 Prediction of water flows in Colorado River, Argentina/Predicción de caudales en río Colorado, Argentina. Latin American Journal of Aquatic Research 40, 872.
    • (2012) Latin American Journal of Aquatic Research , vol.40 , pp. 872
    • Pierini, J.O.1    Gómez, E.A.2    Telesca, L.3
  • 40
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran, S., Gayathri, S. & Lee, T L. 2008 Support vector regression methodology for storm surge predictions. Ocean Engineering 35, 1578-1587.
    • (2008) Ocean Engineering , vol.35 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.L.3
  • 41
    • 0022924928 scopus 로고
    • Functional trends of scour at bridge piers
    • Raudkivi, A. J. 1986 Functional trends of scour at bridge piers. Journal of Hydraulic Engineering 112, 1-13.
    • (1986) Journal of Hydraulic Engineering , vol.112 , pp. 1-13
    • Raudkivi, A.J.1
  • 43
    • 84901054909 scopus 로고    scopus 로고
    • Gene expression models for prediction of dam breach parameters
    • Sattar, A. M. 2014 Gene expression models for prediction of dam breach parameters. Journal of Hydroinformatics 16, 550-571.
    • (2014) Journal of Hydroinformatics , vol.16 , pp. 550-571
    • Sattar, A.M.1
  • 44
    • 84983064890 scopus 로고    scopus 로고
    • Prediction of organic micropollutant removal in soil aquifer treatment system using GEP
    • 04016027
    • Sattar, A. M. 2016 Prediction of organic micropollutant removal in soil aquifer treatment system using GEP. Journal of Hydrologic Engineering 04016027, 1-15.
    • (2016) Journal of Hydrologic Engineering , pp. 1-15
    • Sattar, A.M.1
  • 45
    • 84955610149 scopus 로고    scopus 로고
    • Predicting timing of watermain failure using gene expression models for infrastructure planning
    • Sattar, A. M., Gharabaghi, B. & McBean, E. 2016 Predicting timing of watermain failure using gene expression models for infrastructure planning. Water Resources Management 30, 1635-1651.
    • (2016) Water Resources Management , vol.30 , pp. 1635-1651
    • Sattar, A.M.1    Gharabaghi, B.2    McBean, E.3
  • 46
    • 84915746827 scopus 로고    scopus 로고
    • Sensor data fusion by support vector regression methodology-A comparative study
    • Shamshirband, S., Petkovic, D., Javidnia, H. & Gani, A. 2015 Sensor data fusion by support vector regression methodology-A comparative study. IEEE Sensors Journal 15, 850-854.
    • (2015) IEEE Sensors Journal , vol.15 , pp. 850-854
    • Shamshirband, S.1    Petkovic, D.2    Javidnia, H.3    Gani, A.4
  • 50
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R. & Price, K. 1997 Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341-359.
    • (1997) Journal of Global Optimization , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 51
    • 75149113559 scopus 로고    scopus 로고
    • Differential evolution algorithm for optimal design of water distribution networks
    • Suribabu, C. 2010 Differential evolution algorithm for optimal design of water distribution networks. Journal of Hydroinformatics 12, 66-82.
    • (2010) Journal of Hydroinformatics , vol.12 , pp. 66-82
    • Suribabu, C.1
  • 57
    • 85016809794 scopus 로고    scopus 로고
    • Modelling bridge pier scour equations using regression methods
    • Yahaya, A. S., Ab Ghani, A. & Nor Azazi, Z. 2002 Modelling bridge pier scour equations using regression methods. Borneo Science Journal 2, 23-32.
    • (2002) Borneo Science Journal , vol.2 , pp. 23-32
    • Yahaya, A.S.1    Ab Ghani, A.2    Nor Azazi, Z.3
  • 58
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang, H., Huang, K., King, I. & Lyu, M. R 2009 Localized support vector regression for time series prediction. Neurocomputing 72, 2659-2669.
    • (2009) Neurocomputing , vol.72 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 59
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu, X., Liong, S. Y & Babovic, V. 2004 EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6, 209-223.
    • (2004) Journal of Hydroinformatics , vol.6 , pp. 209-223
    • Yu, X.1    Liong, S.Y.2    Babovic, V.3
  • 60
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Zadeh, M. R, Amin, S., Khalili, D. & Singh, V. P. 2010 Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resources Management 24, 2673-2688.
    • (2010) Water Resources Management , vol.24 , pp. 2673-2688
    • Zadeh, M.R.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 61
    • 84896396771 scopus 로고    scopus 로고
    • Learning to rank with extreme learning machine
    • Zong, W. & Huang, G B. 2014 Learning to rank with extreme learning machine. Neural Processing Letters 39, 155-166.
    • (2014) Neural Processing Letters , vol.39 , pp. 155-166
    • Zong, W.1    Huang, G.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.