메뉴 건너뛰기




Volumn 29, Issue 7, 2015, Pages 2205-2219

Neuro-Fuzzy GMDH Approach to Predict Longitudinal Dispersion in Water Networks

Author keywords

Longitudinal dispersion coefficient; NF GMDH; Pipe network; PSO algorithm

Indexed keywords

BOLTZMANN EQUATION; COMPLEX NETWORKS; DATA HANDLING; EVOLUTIONARY ALGORITHMS; FRICTION; FUZZY SETS; PARTICLE SWARM OPTIMIZATION (PSO); PIPE FLOW; REYNOLDS NUMBER; SENSITIVITY ANALYSIS; TURBULENT FLOW;

EID: 84939964119     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-015-0936-8     Document Type: Article
Times cited : (67)

References (38)
  • 1
    • 49049121001 scopus 로고    scopus 로고
    • Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks
    • Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. J Energ Convers Manage 49(10):2588–2594
    • (2008) J Energ Convers Manage , vol.49 , Issue.10 , pp. 2588-2594
    • Amanifard, N.1    Nariman-Zadeh, N.2    Farahani, M.H.3    Khalkhali, A.4
  • 2
    • 42449124190 scopus 로고    scopus 로고
    • Mixing at cross junctions in water distribution systems–part II, an experimental study
    • Austin RG, van Bloemen WB, McKenna S, Choi CY (2008) Mixing at cross junctions in water distribution systems–part II, an experimental study. J Water Resour Plan Manag ASCE 134:295–302
    • (2008) J Water Resour Plan Manag ASCE , vol.134 , pp. 295-302
    • Austin, R.G.1    van Bloemen, W.B.2    McKenna, S.3    Choi, C.Y.4
  • 4
    • 85027939411 scopus 로고    scopus 로고
    • Estimation of the change in lake water level by artificial intelligence methods
    • Buyukyildiz M, Tezel G, Yilmaz V (2014) Estimation of the change in lake water level by artificial intelligence methods. Water Resour Manag 28(13):4747–4763
    • (2014) Water Resour Manag , vol.28 , Issue.13 , pp. 4747-4763
    • Buyukyildiz, M.1    Tezel, G.2    Yilmaz, V.3
  • 5
    • 84880043592 scopus 로고    scopus 로고
    • Optimization of water resources utilization by PSO-GA
    • Chang J, Bai T, Huang Q, Yang D (2013) Optimization of water resources utilization by PSO-GA. Water Resour Manag 27(10):3525–3540
    • (2013) Water Resour Manag , vol.27 , Issue.10 , pp. 3525-3540
    • Chang, J.1    Bai, T.2    Huang, Q.3    Yang, D.4
  • 6
    • 0022738617 scopus 로고
    • Calculation of Longitudinal Shear Dispersivity using an N-zone Model as Nàinfinity
    • Chikwendu SC (1986) Calculation of Longitudinal Shear Dispersivity using an N-zone Model as Nàinfinity. J Fluid Mech 167:19–30.
    • (1986) J Fluid Mech , vol.167 , pp. 19-30
    • Chikwendu, S.C.1
  • 7
    • 84973273754 scopus 로고    scopus 로고
    • Dispersion in Steady Pipe Flow with Reynolds Number Under 10,000. Master of Science Thesis Submitted to University of Cincinnati
    • Cutter MR (2004) Dispersion in Steady Pipe Flow with Reynolds Number Under 10,000. Master of Science Thesis Submitted to University of Cincinnati, August 18, 2004
    • (2004) August , vol.18 , pp. 2004
    • Cutter, M.R.1
  • 8
    • 0038804173 scopus 로고    scopus 로고
    • Axial mixing in pipe flows: turbulent and transitional regions
    • Ekambara K, Joshi JB (2003) Axial mixing in pipe flows: turbulent and transitional regions. Chem Eng Sci 58:2715–2724
    • (2003) Chem Eng Sci , vol.58 , pp. 2715-2724
    • Ekambara, K.1    Joshi, J.B.2
  • 9
    • 0014493813 scopus 로고
    • Longitudinal gas dispersion in transitional and turbulent flow through a straight tube
    • Flint LF, Eisenklam P (1969) Longitudinal gas dispersion in transitional and turbulent flow through a straight tube. Can J Chem Eng 47:101–106
    • (1969) Can J Chem Eng , vol.47 , pp. 101-106
    • Flint, L.F.1    Eisenklam, P.2
  • 10
    • 40349107209 scopus 로고
    • Contamination by successive flow in pipe lines
    • Fowler FC, Brown GG (1943) Contamination by successive flow in pipe lines. Am Inst Chem Eng 39:491–516
    • (1943) Am Inst Chem Eng , vol.39 , pp. 491-516
    • Fowler, F.C.1    Brown, G.G.2
  • 12
    • 33748323200 scopus 로고    scopus 로고
    • Fuzzy GMDH-type neural network model and its application to forecasting of mobile communication
    • Hwang HS (2006) Fuzzy GMDH-type neural network model and its application to forecasting of mobile communication. Comput Ind Eng 50:450–457
    • (2006) Comput Ind Eng , vol.50 , pp. 450-457
    • Hwang, H.S.1
  • 13
    • 0002433997 scopus 로고    scopus 로고
    • Extending genetic programming with recombi-native guidance
    • MIT Press Cambridge
    • Iba H, De Garis H (1996) Extending genetic programming with recombi-native guidance, in: P. Angeline, K. Kinnear (Eds.). Advances in Genetic Programming 2 MIT Press Cambridge
    • (1996) P. Angeline, K. Kinnear , pp. 2
    • Iba, H.1    De Garis, H.2    Iba, H.3    De Garis, H.4
  • 15
    • 84984083162 scopus 로고
    • Diffusional film characteristics in turbulent flow: dynamic response method
    • Keyes JJ (1955) Diffusional film characteristics in turbulent flow: dynamic response method. Am Inst Chem Eng J 1:305–311
    • (1955) Am Inst Chem Eng J , vol.1 , pp. 305-311
    • Keyes, J.J.1
  • 16
    • 0036946251 scopus 로고    scopus 로고
    • Neuro fuzzy GMDH network and its application to the soft-Ensor for ethene distillation process
    • Li Y, Qian F (2002) Neuro fuzzy GMDH network and its application to the soft-Ensor for ethene distillation process. Intell Control Autom Proc 4th World Congr 3:2478–2482
    • (2002) Intell Control Autom Proc 4th World Congr , vol.3 , pp. 2478-2482
    • Li, Y.1    Qian, F.2
  • 17
    • 84927804364 scopus 로고    scopus 로고
    • Distribution network assessment using EPANET for intermittent and continuous water supply
    • Mohapatra S, Sargonkar A, Labhasetwar PK (2014) Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resour Manag 28(11):3745–3759
    • (2014) Water Resour Manag , vol.28 , Issue.11 , pp. 3745-3759
    • Mohapatra, S.1    Sargonkar, A.2    Labhasetwar, P.K.3
  • 18
    • 0038653104 scopus 로고
    • Neuro-fuzzy GMDH and its application to modeling grinding characteristics
    • Nagasaka K, Ichihashi H, Leonard R (1995) Neuro-fuzzy GMDH and its application to modeling grinding characteristics. Int J Prod Res 33(5):1229–1240
    • (1995) Int J Prod Res , vol.33 , Issue.5 , pp. 1229-1240
    • Nagasaka, K.1    Ichihashi, H.2    Leonard, R.3
  • 19
    • 84887473211 scopus 로고    scopus 로고
    • Group method of data handling to predict scour depth around bridge piers
    • Najafzadeh M, Azamathulla HM (2013) Group method of data handling to predict scour depth around bridge piers. Neural Comput 23(7–8):2107–2112
    • (2013) Neural Comput , vol.23 , Issue.7-8 , pp. 2107-2112
    • Najafzadeh, M.1    Azamathulla, H.M.2
  • 20
    • 84893170465 scopus 로고    scopus 로고
    • Application of improved neuro-fuzzy GMDH to predict scour downstream of sluice gates
    • Najafzadeh M, Lim SY (2014) Application of improved neuro-fuzzy GMDH to predict scour downstream of sluice gates. Earth Sci Inform. doi:10.1007/s12145-014-0144-8
    • (2014) Earth Sci Inform
    • Najafzadeh, M.1    Lim, S.Y.2
  • 23
    • 46949093808 scopus 로고    scopus 로고
    • Design of hybrid differential evolution and group method in data handling networks for modeling and prediction
    • Onwubolu GC (2008) Design of hybrid differential evolution and group method in data handling networks for modeling and prediction. Inf Sci 178:3618–3634
    • (2008) Inf Sci , vol.178 , pp. 3618-3634
    • Onwubolu, G.C.1
  • 24
    • 8344271571 scopus 로고    scopus 로고
    • Predicting mixing volumes in serial transport in pipelines
    • Rachid FBF, Araujo JH, Baptista RM (2002) Predicting mixing volumes in serial transport in pipelines. J Fluids Eng 124:528–534
    • (2002) J Fluids Eng , vol.124 , pp. 528-534
    • Rachid, F.B.F.1    Araujo, J.H.2    Baptista, R.M.3
  • 25
    • 0027975489 scopus 로고
    • Modeling chlorine residuals in drinking water distribution system
    • Rossman LA, Clark RM, Grayman WM (1994) Modeling chlorine residuals in drinking water distribution system. J Environ Eng ASCE 120(4):803–820
    • (1994) J Environ Eng ASCE , vol.120 , Issue.4 , pp. 803-820
    • Rossman, L.A.1    Clark, R.M.2    Grayman, W.M.3
  • 26
    • 43449105040 scopus 로고    scopus 로고
    • Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method
    • Salajegheh E, Gholizadeh S, Khatibinia M (2008) Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method. Earthq Eng Eng Vib 7(1):14–24
    • (2008) Earthq Eng Eng Vib , vol.7 , Issue.1 , pp. 14-24
    • Salajegheh, E.1    Gholizadeh, S.2    Khatibinia, M.3
  • 27
    • 84925496243 scopus 로고    scopus 로고
    • Comparison of different data-driven approaches for modeling lake level fluctuations: the case of Manyas and Tuz lakes
    • Sanikhani H, Kisi O, Kiafar H, Ghavidel S (2015) Comparison of different data-driven approaches for modeling lake level fluctuations: the case of Manyas and Tuz lakes. Water Resources Management Jan 2015
    • (2015) Water Resources Management Jan , pp. 2015
    • Sanikhani, H.1    Kisi, O.2    Kiafar, H.3    Ghavidel, S.4
  • 28
    • 84892733102 scopus 로고    scopus 로고
    • Gene Expression models for the prediction of longitudinal dispersion coefficient in transitional and turbulent pipe flow
    • Sattar AM (2014a) Gene Expression models for the prediction of longitudinal dispersion coefficient in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract ASCE 5(1):04013011
    • (2014) J Pipeline Syst Eng Pract ASCE , vol.5 , Issue.1 , pp. 04013011
    • Sattar, A.M.1
  • 29
    • 84901054909 scopus 로고    scopus 로고
    • Gene expression models for prediction of dam breach parameters
    • Sattar AM (2014b) Gene expression models for prediction of dam breach parameters. J Hydroinf 16(3):550–571
    • (2014) J Hydroinf , vol.16 , Issue.3 , pp. 550-571
    • Sattar, A.M.1
  • 32
    • 0032165267 scopus 로고    scopus 로고
    • Orthogonal and successive projection methods for the learning of neurofuzzy GMDH
    • Takashi O, Hidetomo I, Tetsuya M, Kazunori N (1998) Orthogonal and successive projection methods for the learning of neurofuzzy GMDH. Inf Sci 110:5–24
    • (1998) Inf Sci , vol.110 , pp. 5-24
    • Takashi, O.1    Hidetomo, I.2    Tetsuya, M.3    Kazunori, N.4
  • 33
    • 0001450380 scopus 로고
    • The dispersion of matter in turbulent flow through a pipe
    • Taylor GI (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc A223:446–468
    • (1954) Proc R Soc , vol.A223 , pp. 446-468
    • Taylor, G.I.1
  • 36
    • 0242413428 scopus 로고    scopus 로고
    • How pipelines make the oil market work - Their networks
    • Allegro Energy Group, New York:
    • Trench CJ (2001) How pipelines make the oil market work - Their networks, operation and regulation. Allegro Energy Group, New York
    • (2001) operation and regulation
    • Trench, C.J.1
  • 37
    • 0036717871 scopus 로고    scopus 로고
    • Advection-dispersion-reaction modeling in water distribution networks
    • Tzatchkov VG, Aldama AA, Arreguin FI (2002) Advection-dispersion-reaction modeling in water distribution networks. ASCE J Water Resour Plan Manag 128(5):334–342
    • (2002) ASCE J Water Resour Plan Manag , vol.128 , Issue.5 , pp. 334-342
    • Tzatchkov, V.G.1    Aldama, A.A.2    Arreguin, F.I.3
  • 38
    • 34547499525 scopus 로고    scopus 로고
    • The Improved GMDH-type Neural Network and Its Application to Forecasting Chaotic Time Series
    • Xiao-mei Z, Zhi-huan S, LI Ping (2002) The Improved GMDH-type Neural Network and Its Application to Forecasting Chaotic Time Series. J Circuits Syst 2002–01.
    • (2002) J Circuits Syst , pp. 2001-2002
    • Xiao-mei, Z.1    Zhi-huan, S.2    Ping, L.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.