메뉴 건너뛰기




Volumn 15, Issue 2, 2015, Pages 850-854

Sensor data fusion by support vector regression methodology - A comparative study

Author keywords

contextual information; Sensor fusion; soft computing; support vector regression

Indexed keywords

FUNCTIONS; INFORMATION FILTERING; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; SOFT COMPUTING;

EID: 84915746827     PISSN: 1530437X     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSEN.2014.2356501     Document Type: Article
Times cited : (91)

References (23)
  • 1
    • 84888313001 scopus 로고    scopus 로고
    • A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings
    • J. A. Rodger, "A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings," Expert Syst. Appl., vol. 41, no. 4, pp. 1813-1829, 2014
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1813-1829
    • Rodger, J.A.1
  • 2
    • 3042733943 scopus 로고    scopus 로고
    • Radar fusion to detect targets. Part III
    • M. Grazzini and A. Farina, "Radar fusion to detect targets. Part III," Signal Process., vol. 84, no. 8, pp. 1347-1358, 2004
    • (2004) Signal Process. , vol.84 , Issue.8 , pp. 1347-1358
    • Grazzini, M.1    Farina, A.2
  • 3
    • 33644976580 scopus 로고    scopus 로고
    • GPS/IMU data fusion using multisensor Kalman filtering: Introduction of contextual aspects
    • F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe, "GPS/IMU data fusion using multisensor Kalman filtering: Introduction of contextual aspects," Inf. Fusion, vol. 7, no. 2, pp. 221-230, 2006
    • (2006) Inf. Fusion , vol.7 , Issue.2 , pp. 221-230
    • Caron, F.1    Duflos, E.2    Pomorski, D.3    Vanheeghe, P.4
  • 4
    • 43549095771 scopus 로고    scopus 로고
    • Distributed Kalman filtering for cascaded systems
    • Z. Lendek, R. Babuška, and B. De Schutter, "Distributed Kalman filtering for cascaded systems," Eng. Appl. Artif. Intell., vol. 21, no. 3, pp. 457-469, 2008
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.3 , pp. 457-469
    • Lendek, Z.1    Babuška, R.2    De Schutter, B.3
  • 5
    • 70449520109 scopus 로고    scopus 로고
    • A combined wavelet analysisfuzzy adaptive algorithm for radar/infrared data fusion
    • C. Y. Dong, Q. Yuan, and Q. Wang, "A combined wavelet analysisfuzzy adaptive algorithm for radar/infrared data fusion," Expert Syst. Appl., vol. 37, no. 3, pp. 2563-2570, 2010
    • (2010) Expert Syst. Appl. , vol.37 , Issue.3 , pp. 2563-2570
    • Dong, C.Y.1    Yuan, Q.2    Wang, Q.3
  • 6
    • 84859213809 scopus 로고    scopus 로고
    • Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy multi-sensor data fusion Kalman filter approach for IVHMS
    • J. A. Rodger, "Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy multi-sensor data fusion Kalman filter approach for IVHMS," Expert Syst. Appl., vol. 39, no. 10, pp. 9821-9836, 2012
    • (2012) Expert Syst. Appl. , vol.39 , Issue.10 , pp. 9821-9836
    • Rodger, J.A.1
  • 7
    • 84855976212 scopus 로고    scopus 로고
    • An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking
    • C. Mazzà, M. Donati, J. McCamley, P. Picerno, and A. Cappozzo, "An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking," Gait Posture, vol. 35, no. 1, pp. 138-142, 2012
    • (2012) Gait Posture , vol.35 , Issue.1 , pp. 138-142
    • Mazzà, C.1    Donati, M.2    McCamley, J.3    Picerno, P.4    Cappozzo, A.5
  • 8
    • 54049132443 scopus 로고    scopus 로고
    • Improved Kalman-filter nonuniformity correction algorithm for infrared focal plane arrays
    • H.-X. Zhou, H.-L. Qin, Y.-B. Jian, B.-J. Wang, and S.-Q. Liu, "Improved Kalman-filter nonuniformity correction algorithm for infrared focal plane arrays," Infr. Phys. Technol., vol. 51, no. 6, pp. 528-531, 2008
    • (2008) Infr. Phys. Technol. , vol.51 , Issue.6 , pp. 528-531
    • Zhou, H.-X.1    Qin, H.-L.2    Jian, Y.-B.3    Wang, B.-J.4    Liu, S.-Q.5
  • 9
    • 84870239179 scopus 로고    scopus 로고
    • Intelligent rotational direction control of passive robotic joint with embedded sensors
    • D. Petković, M. Issa, N. D. Pavlović, and L. Zentner, "Intelligent rotational direction control of passive robotic joint with embedded sensors," Expert Syst. Appl., vol. 40, no. 4, pp. 1265-1273, 2013
    • (2013) Expert Syst. Appl. , vol.40 , Issue.4 , pp. 1265-1273
    • Petković, D.1    Issa, M.2    Pavlović, N.D.3    Zentner, L.4
  • 11
    • 84870254661 scopus 로고    scopus 로고
    • Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system
    • Feb.
    • S. Wu, Y. Wang, and S. Cheng, "Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system," Neurocomputing, vol. 102, pp. 163-175, Feb. 2013
    • (2013) Neurocomputing , vol.102 , pp. 163-175
    • Wu, S.1    Wang, Y.2    Cheng, S.3
  • 12
    • 84905053339 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy methodology for noise assessment of wind turbine
    • S. Shamshirband, D. Petković, R. Hashim, and S. Motamedi, "Adaptive neuro-fuzzy methodology for noise assessment of wind turbine," PLOS ONE, vol. 9, no. 7, p. e103414, 2014
    • (2014) PLOS ONE , vol.9 , Issue.7 , pp. e103414
    • Shamshirband, S.1    Petković, D.2    Hashim, R.3    Motamedi, S.4
  • 14
    • 32044458124 scopus 로고    scopus 로고
    • An algorithm for semi-supervised learning in image retrieval
    • K. Lu, J. Zhao, and D. Cai, "An algorithm for semi-supervised learning in image retrieval," Pattern Recognit., vol. 39, no. 4, pp. 717-720, 2006
    • (2006) Pattern Recognit. , vol.39 , Issue.4 , pp. 717-720
    • Lu, K.1    Zhao, J.2    Cai, D.3
  • 15
    • 84875758815 scopus 로고    scopus 로고
    • Combining active learning and semisupervised learning to construct SVM classifier
    • May
    • Y. Leng, X. Xu, and G. Qi, "Combining active learning and semisupervised learning to construct SVM classifier," Knowl.-Based Syst., vol. 44, pp. 121-131, May 2013
    • (2013) Knowl.-Based Syst. , vol.44 , pp. 121-131
    • Leng, Y.1    Xu, X.2    Qi, G.3
  • 16
    • 78049281871 scopus 로고    scopus 로고
    • Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
    • L. Ornella and E. Tapia, "Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data," Comput. Electron. Agriculture, vol. 74, no. 2, pp. 250-257, 2010
    • (2010) Comput. Electron. Agriculture , vol.74 , Issue.2 , pp. 250-257
    • Ornella, L.1    Tapia, E.2
  • 17
    • 67349229243 scopus 로고    scopus 로고
    • Supervised machine learning algorithms for protein structure classification
    • P. Jain, J. M. Garibaldi, and J. D. Hirst, "Supervised machine learning algorithms for protein structure classification," Comput. Biol. Chem., vol. 33, no. 3, pp. 216-223, 2009
    • (2009) Comput. Biol. Chem. , vol.33 , Issue.3 , pp. 216-223
    • Jain, P.1    Garibaldi, J.M.2    Hirst, J.D.3
  • 18
    • 84885435300 scopus 로고    scopus 로고
    • Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis
    • Jan.
    • A. Balahura and M. Turchi, "Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis," Comput. Speech Lang., vol. 28, no. 1, pp. 56-75, Jan. 2014
    • (2014) Comput. Speech Lang. , vol.28 , Issue.1 , pp. 56-75
    • Balahura, A.1    Turchi, M.2
  • 19
    • 78649709873 scopus 로고    scopus 로고
    • Bayesian semi-supervised learning with support vector machine
    • S. Chakraborty, "Bayesian semi-supervised learning with support vector machine," Statist. Methodol., vol. 8, no. 1, pp. 68-82, 2011
    • (2011) Statist. Methodol. , vol.8 , Issue.1 , pp. 68-82
    • Chakraborty, S.1
  • 20
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • S. Rajasekaran, S. Gayathri, and T.-L. Lee, "Support vector regression methodology for storm surge predictions," Ocean Eng., vol. 35, no. 16, pp. 1578-1587, 2008
    • (2008) Ocean Eng. , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 21
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • H. Yang, K. Huang, I. King, and M. R. Lyu, "Localized support vector regression for time series prediction," Neurocomputing, vol. 72, nos. 10-12, pp. 2659-2669, 2009
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 22
    • 84879322256 scopus 로고    scopus 로고
    • A dynamic particle filtersupport vector regression method for reliability prediction
    • Nov.
    • Z. Wei, T. Tao, D. ZhuoShu, and E. Zio, "A dynamic particle filtersupport vector regression method for reliability prediction," Rel. Eng. Syst. Safety, vol. 119, pp. 109-116, Nov. 2013
    • (2013) Rel. Eng. Syst. Safety , vol.119 , pp. 109-116
    • Wei, Z.1    Tao, T.2    Zhuoshu, D.3    Zio, E.4
  • 23
    • 84867884437 scopus 로고    scopus 로고
    • Iterated time series prediction with multiple support vector regression models
    • Jan.
    • L. Zhang, W.-D. Zhou, P.-C. Chang, J.-W. Yang, and F.-Z. Li, "Iterated time series prediction with multiple support vector regression models," Neurocomputing, vol. 99, pp. 411-422, Jan. 2013.
    • (2013) Neurocomputing , vol.99 , pp. 411-422
    • Zhang, L.1    Zhou, W.-D.2    Chang, P.-C.3    Yang, J.-W.4    Li, F.-Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.