메뉴 건너뛰기




Volumn 202, Issue , 2017, Pages 54-63

Randomized kernels for large scale Earth observation applications

Author keywords

Biophysical parameter estimation; Cloud screening; Copernicus Sentinel 2; Emulation; IASI MetOp; Image classification; Kernel machines; Machine learning; Model inversion; Random features; SEVIRI MSG

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; IMAGE PROCESSING; LEARNING ALGORITHMS; LEARNING SYSTEMS; MAPPING; OBSERVATORIES; RADIATIVE TRANSFER; REMOTE SENSING; SPACE OPTICS;

EID: 85015678699     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2017.02.009     Document Type: Article
Times cited : (22)

References (81)
  • 1
    • 85032751590 scopus 로고    scopus 로고
    • Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods
    • Arenas-García, J., Petersen, K.B., Camps-Valls, G., Hansen, L.K., Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods. IEEE Signal Process. Mag. 30:4 (2013), 16–29.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.4 , pp. 16-29
    • Arenas-García, J.1    Petersen, K.B.2    Camps-Valls, G.3    Hansen, L.K.4
  • 2
    • 33751337343 scopus 로고    scopus 로고
    • Neural network estimation of LAI, fAPAR, fCover and LAI ×Cab, from top of canopy MERIS reflectance data: principles and validation
    • Bacour, C., Baret, F., Béal, D., Weiss, M., Pavageau, K., Neural network estimation of LAI, fAPAR, fCover and LAI ×Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sens. Environ. 105:4 (2006), 313–325.
    • (2006) Remote Sens. Environ. , vol.105 , Issue.4 , pp. 313-325
    • Bacour, C.1    Baret, F.2    Béal, D.3    Weiss, M.4    Pavageau, K.5
  • 3
    • 84881219181 scopus 로고    scopus 로고
    • Geov1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: principles of development and production
    • Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B., Geov1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: principles of development and production. Remote Sens. Environ. 137:0 (2013), 299–309.
    • (2013) Remote Sens. Environ. , vol.137 , pp. 299-309
    • Baret, F.1    Weiss, M.2    Lacaze, R.3    Camacho, F.4    Makhmara, H.5    Pacholcyzk, P.6    Smets, B.7
  • 5
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Benediktsson, J., Palmason, J., Sveinsson, J., Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosc. Rem. Sens. 43 (2005), 480–490.
    • (2005) IEEE Trans. Geosc. Rem. Sens. , vol.43 , pp. 480-490
    • Benediktsson, J.1    Palmason, J.2    Sveinsson, J.3
  • 7
    • 0031673762 scopus 로고    scopus 로고
    • Finding optimal neural networks for land use classification
    • Bischof, H., Leona, A., Finding optimal neural networks for land use classification. IEEE Trans. Geosci. Rem. Sens. 36:1 (1998), 337–341.
    • (1998) IEEE Trans. Geosci. Rem. Sens. , vol.36 , Issue.1 , pp. 337-341
    • Bischof, H.1    Leona, A.2
  • 8
    • 0026868031 scopus 로고
    • Multispectral classification of landsat-images using neural networks
    • Bischof, H., Schneider, W., Pinz, A., Multispectral classification of landsat-images using neural networks. IEEE Trans. Geosci. Remote Sens. 30:3 (1992, May), 482–490.
    • (1992) IEEE Trans. Geosci. Remote Sens. , vol.30 , Issue.3 , pp. 482-490
    • Bischof, H.1    Schneider, W.2    Pinz, A.3
  • 9
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Bordes, A., Ertekin, S., Weston, J., Bottou, L., Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 6 (2005), 1579–1619.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 11
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
    • Bruzzone, L., Fernández Prieto, F., A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans. Geosci. Rem. Sens. 37:2 (1999), 1179–1185.
    • (1999) IEEE Trans. Geosci. Rem. Sens. , vol.37 , Issue.2 , pp. 1179-1185
    • Bruzzone, L.1    Fernández Prieto, F.2
  • 12
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls, G., Bruzzone, L., Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosc. Rem. Sens. 43:6 (2005, Jun), 1351–1362.
    • (2005) IEEE Trans. Geosc. Rem. Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 13
    • 84889287185 scopus 로고    scopus 로고
    • Kernel Methods for Remote Sensing Data Analysis
    • Wiley & Sons, UK
    • Camps-Valls, G., Bruzzone, L., Kernel Methods for Remote Sensing Data Analysis., 2009, Wiley & Sons, UK.
    • (2009)
    • Camps-Valls, G.1    Bruzzone, L.2
  • 16
    • 84860333725 scopus 로고    scopus 로고
    • Nonlinear statistical retrieval of atmospheric profiles from metop-IASI and MTG-IRS infrared sounding data
    • Camps-Valls, G., Muñoz, J., Gómez-Chova, L., Guanter, L., Calbet, X., Nonlinear statistical retrieval of atmospheric profiles from metop-IASI and MTG-IRS infrared sounding data. IEEE Trans. Geosci. Rem. Sens. 50:5 (2012), 1759–1769.
    • (2012) IEEE Trans. Geosci. Rem. Sens. , vol.50 , Issue.5 , pp. 1759-1769
    • Camps-Valls, G.1    Muñoz, J.2    Gómez-Chova, L.3    Guanter, L.4    Calbet, X.5
  • 17
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J., Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31:1 (2014, Jan), 45–54.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 20
    • 0141549723 scopus 로고    scopus 로고
    • IASI: an advanced sounder for operational meteorology
    • (Toulouse, France, 1–5 October 2001)
    • Chalon, G., Cayla, F., Diebel, D., IASI: an advanced sounder for operational meteorology. Proceedings of the 52nd Congress of IAF, 2001 (Toulouse, France, 1–5 October 2001).
    • (2001) Proceedings of the 52nd Congress of IAF
    • Chalon, G.1    Cayla, F.2    Diebel, D.3
  • 21
    • 33745108213 scopus 로고    scopus 로고
    • MSG/SEVIRI cloud mask and type from SAFNWC
    • Derrien, M., Le Gléau, H., MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 26:21 (2005), 4707–4732.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.21 , pp. 4707-4732
    • Derrien, M.1    Le Gléau, H.2
  • 25
    • 33846939265 scopus 로고    scopus 로고
    • Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
    • Durbha, S., King, R., Younan, N., Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107:1-2 (2007), 348–361.
    • (2007) Remote Sens. Environ. , vol.107 , Issue.1-2 , pp. 348-361
    • Durbha, S.1    King, R.2    Younan, N.3
  • 26
    • 78651433715 scopus 로고    scopus 로고
    • Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion
    • Duveiller, G., Weiss, M., Baret, F., Defourny, P., Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 115:3 (2011), 887–896.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.3 , pp. 887-896
    • Duveiller, G.1    Weiss, M.2    Baret, F.3    Defourny, P.4
  • 28
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel, M., Benediktsson, J., Chanussot, J., Sveinsson, J., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosc. Rem. Sens. 46:11 (2008), 3804–3814.
    • (2008) IEEE Trans. Geosc. Rem. Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.2    Chanussot, J.3    Sveinsson, J.4
  • 29
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine, S., Scheinberg, K., Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res. 2 (2001), 243–264.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 30
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody, G.M., Mathur, J., A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Rem. Sens., 2004, Jul, 1–9.
    • (2004) IEEE Trans. Geosci. Rem. Sens. , pp. 1-9
    • Foody, G.M.1    Mathur, J.2
  • 31
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A., Brodley, C.E., Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61 (1997), 399–409.
    • (1997) Remote Sens. Environ. , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 32
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi, P., Kowalski, B., Partial least-squares regression: a tutorial. Anal. Chim. Acta 185:C (1986), 1–17.
    • (1986) Anal. Chim. Acta , vol.185 , Issue.100 , pp. 1-17
    • Geladi, P.1    Kowalski, B.2
  • 33
    • 70849126253 scopus 로고    scopus 로고
    • The unreasonable effectiveness of data
    • Halevy, A., Norvig, P., Pereira, F., The unreasonable effectiveness of data. IEEE Intell. Syst. 24:2 (2009, Mar), 8–12.
    • (2009) IEEE Intell. Syst. , vol.24 , Issue.2 , pp. 8-12
    • Halevy, A.1    Norvig, P.2    Pereira, F.3
  • 34
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: an alternative to traditional land cover classifiers
    • Hansen, M., Dubayah, R., Defries, R., Classification trees: an alternative to traditional land cover classifiers. Int. J. Rem. Sens. 17:5 (1996), 1075–1081.
    • (1996) Int. J. Rem. Sens. , vol.17 , Issue.5 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    Defries, R.3
  • 35
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • Second Springer-Verlag New York, USA
    • Hastie, T., Tibshirani, R., Friedman, J.H., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second, 2009, Springer-Verlag, New York, USA.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.H.3
  • 36
    • 67649438825 scopus 로고    scopus 로고
    • Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments
    • Hilton, F., Atkinson, N.C., English, S.J., Eyre, J.R., Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Q. J. R. Meteorol. Soc. 135 (2009), 495–505.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 495-505
    • Hilton, F.1    Atkinson, N.C.2    English, S.J.3    Eyre, J.R.4
  • 37
    • 80051905735 scopus 로고    scopus 로고
    • Cloud detection in meteosat second generation imagery at the met office
    • Hocking, J., Francis, P.N., Saunders, R., Cloud detection in meteosat second generation imagery at the met office. Meteorol. Appl. 18:3 (2011), 307–323.
    • (2011) Meteorol. Appl. , vol.18 , Issue.3 , pp. 307-323
    • Hocking, J.1    Francis, P.N.2    Saunders, R.3
  • 38
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L.S., Townshend, J.R.G., An assessment of support vector machines for land cover classification. Int. J. Rem. Sens. 23:4 (2002), 725–749.
    • (2002) Int. J. Rem. Sens. , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 39
    • 0026446012 scopus 로고
    • Vertical resolution and accuracy of atmospheric infrared sounding spectrometers
    • Huang, H.L., Smith, W.L., Woolf, H.M., Vertical resolution and accuracy of atmospheric infrared sounding spectrometers. J. Appl. Meteor. 31 (1992), 265–274.
    • (1992) J. Appl. Meteor. , vol.31 , pp. 265-274
    • Huang, H.L.1    Smith, W.L.2    Woolf, H.M.3
  • 43
    • 84860672647 scopus 로고    scopus 로고
    • Sampling methods for the Nyström method
    • Kumar, S., Mohri, M., Talwalkar, A., Sampling methods for the Nyström method. J. Mach. Learn. Res. 13 (2012), 981–1006.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 981-1006
    • Kumar, S.1    Mohri, M.2    Talwalkar, A.3
  • 48
    • 0003778941 scopus 로고    scopus 로고
    • An Introduction to Atmospheric Radiation
    • Second Academic Press Hampton, USA
    • Liou, K.N., An Introduction to Atmospheric Radiation. Second, 2002, Academic Press, Hampton, USA.
    • (2002)
    • Liou, K.N.1
  • 49
    • 85035751461 scopus 로고    scopus 로고
    • Pre-launch assessment of worldview-3 information content
    • (Lausanne, Switzerland)
    • Longbotham, N., Pacifici, F., Baugh, B., CampsValls, G., Pre-launch assessment of worldview-3 information content., 2014, June, 24–27 (Lausanne, Switzerland).
    • (2014) , pp. 24-27
    • Longbotham, N.1    Pacifici, F.2    Baugh, B.3    CampsValls, G.4
  • 50
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Rem. Sens. 42:8 (2004), 1778–1790.
    • (2004) IEEE Trans. Geosci. Rem. Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 53
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
    • Pacifici, F., Chini, M., Emery, W., A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113:6 (2009), 1276–1292.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.3
  • 54
    • 77954625423 scopus 로고    scopus 로고
    • Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
    • Pasolli, L., Melgani, F., Blanzieri, E., Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geosc. Rem. Sens. Lett., 2010, 464–468.
    • (2010) IEEE Geosc. Rem. Sens. Lett. , pp. 464-468
    • Pasolli, L.1    Melgani, F.2    Blanzieri, E.3
  • 56
    • 40449096999 scopus 로고    scopus 로고
    • Parallel morphological/neural processing of hyperspectral images using heterogeneous and homogeneous platforms
    • Plaza, J., Pérez, R., Plaza, A., Martínez, P., Valencia, D., Parallel morphological/neural processing of hyperspectral images using heterogeneous and homogeneous platforms. Cluster Comput. 11 (2008), 17–32.
    • (2008) Cluster Comput. , vol.11 , pp. 17-32
    • Plaza, J.1    Pérez, R.2    Plaza, A.3    Martínez, P.4    Valencia, D.5
  • 57
    • 40649116915 scopus 로고    scopus 로고
    • Assimilating canopy reflectance data into an ecosystem model with an ensemble kalman filter
    • Quaife, T., Lewis, P., De Kauwe, M., Williams, M., Law, B.E., Disney, M., Bowyer, P., Assimilating canopy reflectance data into an ecosystem model with an ensemble kalman filter. Remote Sens. Environ. 112:4 (2008), 1347–1364.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.4 , pp. 1347-1364
    • Quaife, T.1    Lewis, P.2    De Kauwe, M.3    Williams, M.4    Law, B.E.5    Disney, M.6    Bowyer, P.7
  • 59
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: replacing minimization with randomization in learning
    • Koller D. Schuurmans D. Bengio Y. Bottou L. Curran Associates, Inc.
    • Rahimi, A., Recht, B., Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., (eds.) Advances in Neural Information Processing Systems 21, 2009, Curran Associates, Inc., 1313–1320.
    • (2009) Advances in Neural Information Processing Systems 21 , pp. 1313-1320
    • Rahimi, A.1    Recht, B.2
  • 61
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning
    • The MIT Press New York
    • Rasmussen, C.E., Williams, C.K.I., Gaussian Processes for Machine Learning. 2006, The MIT Press, New York.
    • (2006)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 62
    • 0039175794 scopus 로고
    • I: Functional Analysis, Volume 1 (Methods of Modern Mathematical Physics) (Vol 1)
    • First Academic Press
    • Reed, M., Simon, B., I: Functional Analysis, Volume 1 (Methods of Modern Mathematical Physics) (Vol 1). First, 1981, Jan, Academic Press.
    • (1981)
    • Reed, M.1    Simon, B.2
  • 63
    • 84855449469 scopus 로고    scopus 로고
    • Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the hyperspectral infrared imager (hyspIRI) decadal survey mission
    • Roberts, D., Quattrochi, D., Hulley, G., Hook, S., Green, R., Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the hyperspectral infrared imager (hyspIRI) decadal survey mission. Remote Sens. Environ. 117 (2012), 83–101.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 83-101
    • Roberts, D.1    Quattrochi, D.2    Hulley, G.3    Hook, S.4    Green, R.5
  • 64
    • 0004116414 scopus 로고
    • Real and Complex Analysis
    • Third McGraw-Hill Book Co. New York
    • Rudin, W., Real and Complex Analysis. Third, 1987, McGraw-Hill Book Co., New York.
    • (1987)
    • Rudin, W.1
  • 67
    • 0004094721 scopus 로고    scopus 로고
    • Learning With Kernels - Support Vector Machines, Regularization, Optimization and Beyond
    • MIT Press Series
    • Schölkopf, B., Smola, A., Learning With Kernels - Support Vector Machines, Regularization, Optimization and Beyond. 2002, MIT Press Series.
    • (2002)
    • Schölkopf, B.1    Smola, A.2
  • 68
    • 14644392676 scopus 로고    scopus 로고
    • Kernel Methods for Pattern Analysis
    • Cambridge University Press
    • Shawe-Taylor, J., Cristianini, N., Kernel Methods for Pattern Analysis. 2004, Cambridge University Press.
    • (2004)
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 69
    • 0030622861 scopus 로고    scopus 로고
    • Infrared atmospheric sounding interferometer
    • Siméoni, D., Singer, C., Chalon, G., Infrared atmospheric sounding interferometer. Acta Astronaut. 40 (1997), 113–118.
    • (1997) Acta Astronaut. , vol.40 , pp. 113-118
    • Siméoni, D.1    Singer, C.2    Chalon, G.3
  • 71
    • 84998912701 scopus 로고    scopus 로고
    • On the error of random Fourier features
    • Sutherland, J., Schneider, J., On the error of random Fourier features. 2015, 862871.
    • (2015) , pp. 862871
    • Sutherland, J.1    Schneider, J.2
  • 72
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J., Vandewalle, J., Least squares support vector machine classifiers. Neural. Process. Lett. 9:3 (1999), 293–300.
    • (1999) Neural. Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 74
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Tuia, D., Pacifici, F., Kanevski, M., Emery, W., Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans. Geosci. Rem. Sens. 47:11 (2009, Nov), 3866–3879.
    • (2009) IEEE Trans. Geosci. Rem. Sens. , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.4
  • 76
    • 83455181750 scopus 로고    scopus 로고
    • Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3
    • Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J., Camps-Valls, G., Moreno, J., Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3. Remote Sens. Environ. 118 (2012), 127–139.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 127-139
    • Verrelst, J.1    Muñoz, J.2    Alonso, L.3    Delegido, J.4    Rivera, J.5    Camps-Valls, G.6    Moreno, J.7
  • 77
    • 84886795785 scopus 로고    scopus 로고
    • Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval
    • Verrelst, J., Rivera, J., Moreno, J., Camps-Valls, G., Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote. Sens. 86 (2013), 157–167.
    • (2013) ISPRS J. Photogramm. Remote. Sens. , vol.86 , pp. 157-167
    • Verrelst, J.1    Rivera, J.2    Moreno, J.3    Camps-Valls, G.4
  • 80
    • 33750840482 scopus 로고    scopus 로고
    • Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine
    • Yang, F., White, M., Michaelis, A., Ichii, K., Hashimoto, H., Votava, P., Zhu, A.-X., Nemani, R., Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Trans. Geosc. Rem. Sens. 44:11 (2006, Nov), 3452–3461.
    • (2006) IEEE Trans. Geosc. Rem. Sens. , vol.44 , Issue.11 , pp. 3452-3461
    • Yang, F.1    White, M.2    Michaelis, A.3    Ichii, K.4    Hashimoto, H.5    Votava, P.6    Zhu, A.-X.7    Nemani, R.8
  • 81
    • 84898041590 scopus 로고    scopus 로고
    • Divide and conquer kernel ridge regression
    • Zhang, Y., Duchi, J.C., Wainwright, M.J., Divide and conquer kernel ridge regression. COLT, 2013, 592–617.
    • (2013) COLT , pp. 592-617
    • Zhang, Y.1    Duchi, J.C.2    Wainwright, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.