메뉴 건너뛰기




Volumn 30, Issue , 2013, Pages 592-617

Divide and conquer kernel ridge regression

Author keywords

[No Author keywords available]

Indexed keywords

OPTIMIZATION;

EID: 84898041590     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (194)

References (33)
  • 6
  • 7
    • 84890096199 scopus 로고    scopus 로고
    • The masked sample covariance estimator: An analysis using matrix concentration inequalities
    • to appear
    • R. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance estimator: an analysis using matrix concentration inequalities. Information and Inference, to appear, 2012.
    • (2012) Information and Inference
    • Chen, R.1    Gittens, A.2    Tropp, J.A.3
  • 8
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2: 243-264, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 12
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12: 55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 14
    • 33746194045 scopus 로고    scopus 로고
    • Local rademacher complexities and oracle inequalities in risk minimization
    • V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. Annals of Statistics, 34(6): 2593-2656, 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.6 , pp. 2593-2656
    • Koltchinskii, V.1
  • 18
    • 84937392733 scopus 로고    scopus 로고
    • Geometric parameters of kernel machines
    • S. Mendelson. Geometric parameters of kernel machines. In Proceedings of COLT, pages 29-43, 2002.
    • (2002) Proceedings of COLT , pp. 29-43
    • Mendelson, S.1
  • 20
    • 84857824105 scopus 로고    scopus 로고
    • Minimax-optimal rates for sparse additive models over kernel classes via convex programming
    • March
    • G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models over kernel classes via convex programming. Journal of Machine Learning Research, 12: 389-427, March 2012.
    • (2012) Journal of Machine Learning Research , vol.12 , pp. 389-427
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 25
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for non-parametric regression
    • C. J. Stone. Optimal global rates of convergence for non-parametric regression. Annals of Statistics, 10(4): 1040-1053, 1982.
    • (1982) Annals of Statistics , vol.10 , Issue.4 , pp. 1040-1053
    • Stone, C.J.1
  • 31
    • 34547435898 scopus 로고    scopus 로고
    • On early stopping in gradient descent learning
    • Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive Approximation, 26(2): 289-315, 2007.
    • (2007) Constructive Approximation , vol.26 , Issue.2 , pp. 289-315
    • Yao, Y.1    Rosasco, L.2    Caponnetto, A.3
  • 32
    • 22944490838 scopus 로고    scopus 로고
    • Learning bounds for kernel regression using effective data dimensionality
    • T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Computation, 17(9): 2077-2098, 2005.
    • (2005) Neural Computation , vol.17 , Issue.9 , pp. 2077-2098
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.