-
1
-
-
26444592981
-
Local rademacher complexities
-
P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals of Statistics, 33(4): 1497-1537, 2005.
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.1
Bousquet, O.2
Mendelson, S.3
-
7
-
-
84890096199
-
The masked sample covariance estimator: An analysis using matrix concentration inequalities
-
to appear
-
R. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance estimator: an analysis using matrix concentration inequalities. Information and Inference, to appear, 2012.
-
(2012)
Information and Inference
-
-
Chen, R.1
Gittens, A.2
Tropp, J.A.3
-
8
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2: 243-264, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
12
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12: 55-67, 1970.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
14
-
-
33746194045
-
Local rademacher complexities and oracle inequalities in risk minimization
-
V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. Annals of Statistics, 34(6): 2593-2656, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.6
, pp. 2593-2656
-
-
Koltchinskii, V.1
-
18
-
-
84937392733
-
Geometric parameters of kernel machines
-
S. Mendelson. Geometric parameters of kernel machines. In Proceedings of COLT, pages 29-43, 2002.
-
(2002)
Proceedings of COLT
, pp. 29-43
-
-
Mendelson, S.1
-
19
-
-
84856084096
-
Early stopping for non-parametric regression: An optimal data-dependent stopping rule
-
G. Raskutti, M. Wainwright, and B. Yu. Early stopping for non-parametric regression: An optimal data-dependent stopping rule. In 49th Annual Allerton Conference on Communication, Control, and Computing, pages 1318-1325, 2011.
-
(2011)
49th Annual Allerton Conference on Communication, Control, and Computing
, pp. 1318-1325
-
-
Raskutti, G.1
Wainwright, M.2
Yu, B.3
-
20
-
-
84857824105
-
Minimax-optimal rates for sparse additive models over kernel classes via convex programming
-
March
-
G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models over kernel classes via convex programming. Journal of Machine Learning Research, 12: 389-427, March 2012.
-
(2012)
Journal of Machine Learning Research
, vol.12
, pp. 389-427
-
-
Raskutti, G.1
Wainwright, M.J.2
Yu, B.3
-
22
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. IEEE Transactions on Information Theory, 10(5): 1299-1319, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
25
-
-
0000439527
-
Optimal global rates of convergence for non-parametric regression
-
C. J. Stone. Optimal global rates of convergence for non-parametric regression. Annals of Statistics, 10(4): 1040-1053, 1982.
-
(1982)
Annals of Statistics
, vol.10
, Issue.4
, pp. 1040-1053
-
-
Stone, C.J.1
-
31
-
-
34547435898
-
On early stopping in gradient descent learning
-
Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive Approximation, 26(2): 289-315, 2007.
-
(2007)
Constructive Approximation
, vol.26
, Issue.2
, pp. 289-315
-
-
Yao, Y.1
Rosasco, L.2
Caponnetto, A.3
-
32
-
-
22944490838
-
Learning bounds for kernel regression using effective data dimensionality
-
T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Computation, 17(9): 2077-2098, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.9
, pp. 2077-2098
-
-
Zhang, T.1
|