-
1
-
-
84865112598
-
Cancer associated human papillomaviruses
-
McLaughlin-Drubin ME, Meyers J, Munger K. 2012. Cancer associated human papillomaviruses. Curr Opin Virol 2:459-466. https://doi.org/10.1016/j.coviro.2012.05.004
-
(2012)
Curr Opin Virol
, vol.2
, pp. 459-466
-
-
McLaughlin-Drubin, M.E.1
Meyers, J.2
Munger, K.3
-
2
-
-
68949194550
-
Oncogenic activities of human papillomaviruses
-
McLaughlin-Drubin ME, Münger K. 2009. Oncogenic activities of human papillomaviruses. Virus Res 143:195-208. https://doi.org/10.1016/j.virusres.2009.06.008
-
(2009)
Virus Res
, vol.143
, pp. 195-208
-
-
McLaughlin-Drubin, M.E.1
Münger, K.2
-
3
-
-
84896088630
-
Human viral oncogenesis: A cancer hallmarks analysis
-
Mesri EA, Feitelson MA, Munger K. 2014. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 15:266-282. https://doi.org/10.1016/j.chom.2014.02.011
-
(2014)
Cell Host Microbe
, vol.15
, pp. 266-282
-
-
Mesri, E.A.1
Feitelson, M.A.2
Munger, K.3
-
4
-
-
0034614637
-
The hallmarks of cancer
-
Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
-
(2000)
Cell
, vol.100
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.A.2
-
5
-
-
0024535228
-
The humanpapillomavirus-16 E7 oncoprotein is able to bind to the retinoblastomagene product
-
Dyson N, Howley PM, Münger K, Harlow E. 1989. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934-937. https://doi.org/10.1126/science.2537532
-
(1989)
Science
, vol.243
, pp. 934-937
-
-
Dyson, N.1
Howley, P.M.2
Münger, K.3
Harlow, E.4
-
6
-
-
0029834371
-
E7 protein of humanpapillomavirus-16 induces degradation of retinoblastoma proteinthrough the ubiquitin-proteasome pathway
-
Boyer SN, Wazer DE, Band V. 1996. E7 protein of human papillomavirus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620-4624
-
(1996)
Cancer Res
, vol.56
, pp. 4620-4624
-
-
Boyer, S.N.1
Wazer, D.E.2
Band, V.3
-
7
-
-
0031438309
-
Destabilization of the RBtumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis
-
Jones DL, Thompson DA, Münger K. 1997. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239:97-107. https://doi.org/10.1006/viro.1997.8851
-
(1997)
Virology
, vol.239
, pp. 97-107
-
-
Jones, D.L.1
Thompson, D.A.2
Münger, K.3
-
8
-
-
0025639158
-
The E6 oncoprotein encoded by human papillomavirus types 16 and 18promotes the degradation of p53
-
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129-1136. https://doi.org/10.1016/0092-8674(90)90409-8
-
(1990)
Cell
, vol.63
, pp. 1129-1136
-
-
Scheffner, M.1
Werness, B.A.2
Huibregtse, J.M.3
Levine, A.J.4
Howley, P.M.5
-
9
-
-
84885874679
-
Identification ofmiRNAs dysregulated in human foreskin keratinocytes (HFKs) expressingthe human papillomavirus (HPV) type 16 E6 and E7 oncoproteins
-
Yablonska S, Hoskins EE, Wells SI, Khan SA. 2013. Identification of miRNAs dysregulated in human foreskin keratinocytes (HFKs) expressing the human papillomavirus (HPV) type 16 E6 and E7 oncoproteins. Microrna 2:2-13. https://doi.org/10.2174/2211536611302010002
-
(2013)
Microrna
, vol.2
, pp. 2-13
-
-
Yablonska, S.1
Hoskins, E.E.2
Wells, S.I.3
Khan, S.A.4
-
10
-
-
60149095444
-
Most mammalianmRNAs are conserved targets of microRNAs
-
Friedman RC, Farh KK, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92-105. https://doi.org/10.1101/gr.082701.108
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.2
Burge, C.B.3
Bartel, D.P.4
-
11
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215-233. https://doi.org/10.1016/j.cell.2009.01.002
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
12
-
-
77955644289
-
Mammalian microRNAspredominantly act to decrease target mRNA levels
-
Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835-840. https://doi.org/10.1038/nature09267
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
Bartel, D.P.4
-
13
-
-
84922394487
-
MRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues
-
Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu SH, Ghoshal K, Villén J, Bartel DP. 2014. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104-115. https://doi.org/10.1016/j.molcel.2014.08.028
-
(2014)
Mol Cell
, vol.56
, pp. 104-115
-
-
Eichhorn, S.W.1
Guo, H.2
McGeary, S.E.3
Rodriguez-Mias, R.A.4
Shin, C.5
Baek, D.6
Hsu, S.H.7
Ghoshal, K.8
Villén, J.9
Bartel, D.P.10
-
14
-
-
72949115517
-
Concordant regulation of translation andmRNA abundance for hundreds of targets of a human microRNA
-
Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO. 2009. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238. https://doi.org/10.1371/journal.pbio.1000238
-
(2009)
Plos Biol
, vol.7
-
-
Hendrickson, D.G.1
Hogan, D.J.2
McCullough, H.L.3
Myers, J.W.4
Herschlag, D.5
Ferrell, J.E.6
Brown, P.O.7
-
15
-
-
13944282215
-
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
-
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-773. https://doi.org/10.1038/nature03315
-
(2005)
Nature
, vol.433
, pp. 769-773
-
-
Lim, L.P.1
Lau, N.C.2
Garrett-Engele, P.3
Grimson, A.4
Schelter, J.M.5
Castle, J.6
Bartel, D.P.7
Linsley, P.S.8
Johnson, J.M.9
-
16
-
-
33750305743
-
Human papillomavirus genotype31 does not express detectable microRNA levels during latent or productive virus replication
-
Cai X, Li G, Laimins LA, Cullen BR. 2006. Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J Virol 80:10890-10893. https://doi.org/10.1128/JVI.01175-06
-
(2006)
J Virol
, vol.80
, pp. 10890-10893
-
-
Cai, X.1
Li, G.2
Laimins, L.A.3
Cullen, B.R.4
-
17
-
-
84896528671
-
MicroRNAs are biomarkersof oncogenic human papillomavirus infections
-
Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, Zheng ZM. 2014. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sc i U S A 111:4262-4267. https://doi.org/10.1073/pnas.1401430111
-
(2014)
Proc Natl Acad Sc I U S A
, vol.111
, pp. 4262-4267
-
-
Wang, X.1
Wang, H.K.2
Li, Y.3
Hafner, M.4
Banerjee, N.S.5
Tang, S.6
Briskin, D.7
Meyers, C.8
Chow, L.T.9
Xie, X.10
Tuschl, T.11
Zheng, Z.M.12
-
18
-
-
84877355736
-
Human papillomaviruses modulatemicroRNA 145 expression to directly control genome amplification
-
Gunasekharan V, Laimins LA. 2013. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol 87:6037-6043. https://doi.org/10.1128/JVI.00153-13
-
(2013)
J Virol
, vol.87
, pp. 6037-6043
-
-
Gunasekharan, V.1
Laimins, L.A.2
-
19
-
-
1842343575
-
Human papillomavirustype 16 alters human epithelial cell differentiation in vitro
-
McCance DJ, Kopan R, Fuchs E, Laimins LA. 1988. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A 85:7169-7173. https://doi.org/10.1073/pnas.85.19.7169
-
(1988)
Proc Natl Acad Sci U S A
, vol.85
, pp. 7169-7173
-
-
McCance, D.J.1
Kopan, R.2
Fuchs, E.3
Laimins, L.A.4
-
20
-
-
84891818318
-
MiRBase: Annotating high confidence microRNAs using deep sequencing data
-
Kozomara A, Griffiths-Jones S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42: D68-D73. https://doi.org/10.1093/nar/gkt1181
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D68-D73
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
21
-
-
78651293534
-
MiRBase: Integrating microRNAannotation and deep-sequencing data
-
Kozomara A, Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152-D157. https://doi.org/10.1093/nar/gkq1027
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D152-D157
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
23
-
-
33644750115
-
MiRBase: MicroRNA sequences, targets and gene nomenclature
-
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140-D144. https://doi.org/10.1093/nar/gkj112
-
(2006)
Nucleic Acids Res
, vol.34
, pp. D140-D144
-
-
Griffiths-Jones, S.1
Grocock, R.J.2
Van Dongen, S.3
Bateman, A.4
Enright, A.J.5
-
24
-
-
0347755643
-
The microRNA registry
-
Griffiths-Jones S. 2004. The microRNA registry. Nucleic Acids Res 32: D109-D111. https://doi.org/10.1093/nar/gkh023
-
(2004)
Nucleic Acids Res
, vol.32
, pp. D109-D111
-
-
Griffiths-Jones, S.1
-
25
-
-
84951118112
-
Correlations of microRNA:MicroRNA expression patterns reveal insights into microRNA clustersand global microRNA expression patterns
-
Chaulk SG, Ebhardt HA, Fahlman RP. 2016. Correlations of microRNA: microRNA expression patterns reveal insights into microRNA clusters and global microRNA expression patterns. Mol Biosyst 12:110-119. https://doi.org/10.1039/c5mb00415b
-
(2016)
Mol Biosyst
, vol.12
, pp. 110-119
-
-
Chaulk, S.G.1
Ebhardt, H.A.2
Fahlman, R.P.3
-
26
-
-
1942494040
-
Expression profiling of mammalian microRNAs uncovers asubset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation
-
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. 2004. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13. https://doi.org/10.1186/gb-2004-5-3-r13
-
(2004)
Genome Biol
, vol.5
-
-
Sempere, L.F.1
Freemantle, S.2
Pitha-Rowe, I.3
Moss, E.4
Dmitrovsky, E.5
Ambros, V.6
-
27
-
-
0037009364
-
MicroRNA maturation: Stepwiseprocessing and subcellular localization
-
Lee Y, Jeon K, Kim S, Kim VN. 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663-4670. https://doi.org/10.1093/emboj/cdf476
-
(2002)
EMBO J
, vol.21
, pp. 4663-4670
-
-
Lee, Y.1
Jeon, K.2
Kim, S.3
Kim, V.N.4
-
28
-
-
39749143354
-
Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters
-
Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. 2008. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875-886. https://doi.org/10.1016/j.cell.2008.02.019
-
(2008)
Cell
, vol.132
, pp. 875-886
-
-
Ventura, A.1
Young, A.G.2
Winslow, M.M.3
Lintault, L.4
Meissner, A.5
Erkeland, S.J.6
Newman, J.7
Bronson, R.T.8
Crowley, D.9
Stone, J.R.10
Jaenisch, R.11
Sharp, P.A.12
Jacks, T.13
-
29
-
-
0042442335
-
Embryonic stem cell-specificmicroRNAs
-
Houbaviy HB, Murray MF, Sharp PA. 2003. Embryonic stem cell-specific microRNAs. Dev Cell 5:351-358. https://doi.org/10.1016/S1534-5807(03)00227-2
-
(2003)
Dev Cell
, vol.5
, pp. 351-358
-
-
Houbaviy, H.B.1
Murray, M.F.2
Sharp, P.A.3
-
30
-
-
22344449952
-
Thedevelopmental miRNA profiles of zebrafish as determined by small RNA cloning
-
Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T. 2005. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19:1288-1293. https://doi.org/10.1101/gad.1310605
-
(2005)
Genes Dev
, vol.19
, pp. 1288-1293
-
-
Chen, P.Y.1
Manninga, H.2
Slanchev, K.3
Chien, M.4
Russo, J.J.5
Ju, J.6
Sheridan, R.7
John, B.8
Marks, D.S.9
Gaidatzis, D.10
Sander, C.11
Zavolan, M.12
Tuschl, T.13
-
31
-
-
18244385475
-
MicroRNAs regulate brain morphogenesis in zebrafish
-
Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF. 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833-838. https://doi.org/10.1126/science.1109020
-
(2005)
Science
, vol.308
, pp. 833-838
-
-
Giraldez, A.J.1
Cinalli, R.M.2
Glasner, M.E.3
Enright, A.J.4
Thomson, J.M.5
Baskerville, S.6
Hammond, S.M.7
Bartel, D.P.8
Schier, A.F.9
-
32
-
-
2942534403
-
Human embryonic stem cellsexpress a unique set of microRNAs
-
Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. 2004. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488-498. https://doi.org/10.1016/j.ydbio.2004.02.019
-
(2004)
Dev Biol
, vol.270
, pp. 488-498
-
-
Suh, M.R.1
Lee, Y.2
Kim, J.Y.3
Kim, S.K.4
Moon, S.H.5
Lee, J.Y.6
Cha, K.Y.7
Chung, H.M.8
Yoon, H.S.9
Moon, S.Y.10
Kim, V.N.11
Kim, K.S.12
-
33
-
-
22844440427
-
Identification of hundreds of conserved and nonconserved human microRNAs
-
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766-770. https://doi.org/10.1038/ng1590
-
(2005)
Nat Genet
, vol.37
, pp. 766-770
-
-
Bentwich, I.1
Avniel, A.2
Karov, Y.3
Aharonov, R.4
Gilad, S.5
Barad, O.6
Barzilai, A.7
Einat, P.8
Einav, U.9
Meiri, E.10
Sharon, E.11
Spector, Y.12
Bentwich, Z.13
-
34
-
-
84899531677
-
Global analysis ofmiRNA gene clusters and gene families reveals dynamic and coordinated expression
-
782490
-
Guo L, Yang S, Zhao Y, Zhang H, Wu Q, Chen F. 2014. Global analysis of miRNA gene clusters and gene families reveals dynamic and coordinated expression. Biomed Res Int 2014:782490. https://doi.org/10.1155/2014/782490
-
(2014)
Biomed Res Int
, vol.2014
-
-
Guo, L.1
Yang, S.2
Zhao, Y.3
Zhang, H.4
Wu, Q.5
Chen, F.6
-
35
-
-
0141793844
-
Human papillomavirus type 16 E6activates tert gene transcription through induction of c-Myc and releaseof USF-mediated repression
-
McMurray HR, McCance DJ. 2003. Human papillomavirus type 16 E6 activates tert gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol 77:9852-9861. https://doi.org/10.1128/JVI.77.18.9852-9861.2003
-
(2003)
J Virol
, vol.77
, pp. 9852-9861
-
-
McMurray, H.R.1
McCance, D.J.2
-
36
-
-
0025271203
-
Association of human papillomavirus types 16 and 18 E6 proteins with p53
-
Werness BA, Levine AJ, Howley PM. 1990. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76-79. https://doi.org/10.1126/science.2157286
-
(1990)
Science
, vol.248
, pp. 76-79
-
-
Werness, B.A.1
Levine, A.J.2
Howley, P.M.3
-
37
-
-
40749111551
-
A skin microRNA promotesdifferentiation by repressing “stemness”
-
Yi R, Poy MN, Stoffel M, Fuchs E. 2008. A skin microRNA promotes differentiation by repressing “stemness”. Nature 452:225-229. https://doi.org/10.1038/nature06642
-
(2008)
Nature
, vol.452
, pp. 225-229
-
-
Yi, R.1
Poy, M.N.2
Stoffel, M.3
Fuchs, E.4
-
38
-
-
77951454817
-
Human papillomaviruses modulateexpression of microRNA 203 upon epithelial differentiation to controllevels of p63 proteins
-
Melar-New M, Laimins LA. 2010. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 84:5212-5221. https://doi.org/10.1128/JVI.00078-10
-
(2010)
J Virol
, vol.84
, pp. 5212-5221
-
-
Melar-New, M.1
Laimins, L.A.2
-
39
-
-
77957195647
-
MicroRNA 203expression in keratinocytes is dependent on regulation of p53 levels byE6
-
McKenna DJ, McDade SS, Patel D, McCance DJ. 2010. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J Virol 84:10644-10652. https://doi.org/10.1128/JVI.00703-10
-
(2010)
J Virol
, vol.84
, pp. 10644-10652
-
-
McKenna, D.J.1
McDade, S.S.2
Patel, D.3
McCance, D.J.4
-
40
-
-
84930011346
-
MicroRNA-203inhibits cellular proliferation and invasion by targeting Bmi1 in nonsmall cell lung cancer
-
Chen T, Xu C, Chen J, Ding C, Xu Z, Li C, Zhao J. 2015. MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in nonsmall cell lung cancer. Oncol Lett 9:2639-2646. https://doi.org/10.3892/ol.2015.3080
-
(2015)
Oncol Lett
, vol.9
, pp. 2639-2646
-
-
Chen, T.1
Xu, C.2
Chen, J.3
Ding, C.4
Xu, Z.5
Li, C.6
Zhao, J.7
-
41
-
-
84869866890
-
MicroRNA and cancer
-
Jansson MD, Lund AH. 2012. MicroRNA and cancer. Mol Oncol 6:590-610. https://doi.org/10.1016/j.molonc.2012.09.006
-
(2012)
Mol Oncol
, vol.6
, pp. 590-610
-
-
Jansson, M.D.1
Lund, A.H.2
-
42
-
-
20444460289
-
MicroRNA expression profiles classify human cancers
-
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, SweetCordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834-838. https://doi.org/10.1038/nature03702
-
(2005)
Nature
, vol.435
, pp. 834-838
-
-
Lu, J.1
Getz, G.2
Miska, E.A.3
Alvarez-Saavedra, E.4
Lamb, J.5
Peck, D.6
Sweetcordero, A.7
Ebert, B.L.8
Mak, R.H.9
Ferrando, A.A.10
Downing, J.R.11
Jacks, T.12
Horvitz, H.R.13
Golub, T.R.14
-
43
-
-
37549008310
-
Widespread microRNA repression by Myc contributes to tumorigenesis
-
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. 2008. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43-50. https://doi.org/10.1038/ng.2007.30
-
(2008)
Nat Genet
, vol.40
, pp. 43-50
-
-
Chang, T.C.1
Yu, D.2
Lee, Y.S.3
Wentzel, E.A.4
Arking, D.E.5
West, K.M.6
Dang, C.V.7
Thomas-Tikhonenko, A.8
Mendell, J.T.9
-
44
-
-
79952955085
-
Alteration of®microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus
-
Wald AI, Hoskins EE, Wells SI, Ferris RL, Khan SA. 2011. Alteration of ® microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck 33:504-512. https://doi.org/10.1002/hed.21475
-
(2011)
Head Neck
, vol.33
, pp. 504-512
-
-
Wald, A.I.1
Hoskins, E.E.2
Wells, S.I.3
Ferris, R.L.4
Khan, S.A.5
-
45
-
-
84946574681
-
MicroRNA-363 targets myosine 1B to reducecellular migration in head and neck cancer
-
Chapman BV, Wald AI, Akhtar P, Munko AC, Xu J, Gibson SP, Grandis JR, Ferris RL, Khan SA. 2015. MicroRNA-363 targets myosine 1B to reduce cellular migration in head and neck cancer. BMC Cancer 15:861. https://doi.org/10.1186/s12885-015-1888-3
-
(2015)
BMC Cancer
, vol.15
, pp. 861
-
-
Chapman, B.V.1
Wald, A.I.2
Akhtar, P.3
Munko, A.C.4
Xu, J.5
Gibson, S.P.6
Grandis, J.R.7
Ferris, R.L.8
Khan, S.A.9
-
46
-
-
81955161860
-
MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer
-
Myklebust MP, Bruland O, Fluge Ø, Skarstein A, Balteskard L, Dahl O. 2011. MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer. Br J Cancer 105:1719-1725. https://doi.org/10.1038/bjc.2011.457
-
(2011)
Br J Cancer
, vol.105
, pp. 1719-1725
-
-
Myklebust, M.P.1
Bruland, O.2
Fluge, Ø.3
Skarstein, A.4
Balteskard, L.5
Dahl, O.6
-
47
-
-
84887959949
-
MicroRNA portraits in human vulvar carcinoma
-
de Melo Maia B, Lavorato-Rocha AM, Rodrigues LS, Coutinho-Camillo CM, Baiocchi G, Stiepcich MM, Puga R, de A Lima L, Soares FA, Rocha RM. 2013. microRNA portraits in human vulvar carcinoma. Cancer Prev Res (Phila) 6:1231-1241. https://doi.org/10.1158/1940-6207.CAPR-13-0121
-
(2013)
Cancer Prev Res (Phila)
, vol.6
, pp. 1231-1241
-
-
De Melo Maia, B.1
Lavorato-Rocha, A.M.2
Rodrigues, L.S.3
Coutinho-Camillo, C.M.4
Baiocchi, G.5
Stiepcich, M.M.6
Puga, R.7
De A Lima, L.8
Soares, F.A.9
Rocha, R.M.10
-
48
-
-
84913534343
-
Profiling of expression of human papillomavirus-related cancer miRNAs in penile squamous cell carcinomas
-
Barzon L, Cappellesso R, Peta E, Militello V, Sinigaglia A, Fassan M, Simonato F, Guzzardo V, Ventura L, Blandamura S, Gardiman M, Palù G, Fassina A. 2014. Profiling of expression of human papillomavirus-related cancer miRNAs in penile squamous cell carcinomas. Am J Pathol 184: 3376-3383. https://doi.org/10.1016/j.ajpath.2014.08.004
-
(2014)
Am J Pathol
, vol.184
, pp. 3376-3383
-
-
Barzon, L.1
Cappellesso, R.2
Peta, E.3
Militello, V.4
Sinigaglia, A.5
Fassan, M.6
Simonato, F.7
Guzzardo, V.8
Ventura, L.9
Blandamura, S.10
Gardiman, M.11
Palù, G.12
Fassina, A.13
-
49
-
-
77955462456
-
Checks and balances: E2F-microRNA crosstalk in cancer control
-
Emmrich S, Pützer BM. 2010. Checks and balances: E2F-microRNA crosstalk in cancer control. Cell Cycle 9:2555-2567. https://doi.org/10.4161/cc.9.13.12061
-
(2010)
Cell Cycle
, vol.9
, pp. 2555-2567
-
-
Emmrich, S.1
Pützer, B.M.2
-
50
-
-
77953469799
-
Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling
-
Bueno MJ, Gómez de Cedrón M, Laresgoiti U, Fernández-Piqueras J, Zubiaga AM, Malumbres M. 2010. Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 30:2983-2995. https://doi.org/10.1128/MCB.01372-09
-
(2010)
Mol Cell Biol
, vol.30
, pp. 2983-2995
-
-
Bueno, M.J.1
Gómez De Cedrón, M.2
Laresgoiti, U.3
Fernández-Piqueras, J.4
Zubiaga, A.M.5
Malumbres, M.6
-
51
-
-
34249822779
-
Transcriptional activation of miR-34acontributes to p53-mediated apoptosis
-
Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. 2007. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731-743. https://doi.org/10.1016/j.molcel.2007.05.017
-
(2007)
Mol Cell
, vol.26
, pp. 731-743
-
-
Raver-Shapira, N.1
Marciano, E.2
Meiri, E.3
Spector, Y.4
Rosenfeld, N.5
Moskovits, N.6
Bentwich, Z.7
Oren, M.8
-
52
-
-
34250868124
-
Differential regulation of microRNAs byp53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest
-
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. 2007. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586-1593. https://doi.org/10.4161/cc.6.13.4436
-
(2007)
Cell Cycle
, vol.6
, pp. 1586-1593
-
-
Tarasov, V.1
Jung, P.2
Verdoodt, B.3
Lodygin, D.4
Epanchintsev, A.5
Menssen, A.6
Meister, G.7
Hermeking, H.8
-
53
-
-
34249817549
-
Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis
-
Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. 2007. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745-752. https://doi.org/10.1016/j.molcel.2007.05.010
-
(2007)
Mol Cell
, vol.26
, pp. 745-752
-
-
Chang, T.C.1
Wentzel, E.A.2
Kent, O.A.3
Ramachandran, K.4
Mullendore, M.5
Lee, K.H.6
Feldmann, G.7
Yamakuchi, M.8
Ferlito, M.9
Lowenstein, C.J.10
Arking, D.E.11
Beer, M.A.12
Maitra, A.13
Mendell, J.T.14
-
54
-
-
57749099102
-
p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest
-
Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL, Dobbelstein M. 2008. p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68: 10094-10104. https://doi.org/10.1158/0008-5472.CAN-08-1569
-
(2008)
Cancer Res
, vol.68
, pp. 10094-10104
-
-
Braun, C.J.1
Zhang, X.2
Savelyeva, I.3
Wolff, S.4
Moll, U.M.5
Schepeler, T.6
Ørntoft, T.F.7
Ersen, C.L.8
Dobbelstein, M.9
-
55
-
-
77956279586
-
The tumor suppressors p53, p63, and p73 areregulators of microRNA processing complex
-
Boominathan L. 2010. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One 5:e10615. https://doi.org/10.1371/journal.pone.0010615
-
(2010)
Plos One
, vol.5
-
-
Boominathan, L.1
-
56
-
-
67749143728
-
Modulation of microRNA processing by p53
-
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. 2009. Modulation of microRNA processing by p53. Nature 460:529-533. https://doi.org/10.1038/nature08199
-
(2009)
Nature
, vol.460
, pp. 529-533
-
-
Suzuki, H.I.1
Yamagata, K.2
Sugimoto, K.3
Iwamoto, T.4
Kato, S.5
Miyazono, K.6
-
57
-
-
84931281810
-
Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer
-
Servín-González LS, Granados-López AJ, López JA. 2015. Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int J Mol Sci 16:12773-12790. https://doi.org/10.3390/ijms160612773
-
(2015)
Int J Molsci
, vol.16
, pp. 12773-12790
-
-
Servín-González, L.S.1
Granados-López, A.J.2
López, J.A.3
-
58
-
-
77953948708
-
Identification of the miR-106b~25 microRNA cluster as a protooncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation
-
Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, Rameh L, Loda M, Pandolfi PP. 2010. Identification of the miR-106b~25 microRNA cluster as a protooncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:ra29. https://doi.org/10.1126/scisignal.2000594
-
(2010)
Sci Signal
, vol.3
-
-
Poliseno, L.1
Salmena, L.2
Riccardi, L.3
Fornari, A.4
Song, M.S.5
Hobbs, R.M.6
Sportoletti, P.7
Varmeh, S.8
Egia, A.9
Fedele, G.10
Rameh, L.11
Loda, M.12
Pandolfi, P.P.13
-
59
-
-
84883487767
-
MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer
-
Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, Schetter AJ, Watkins SK, Hurwitz AA, Dorsey TH, Stephens RM, Croce CM, Ambs S. 2013. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene 32:4139-4147. https://doi.org/10.1038/onc.2012.424
-
(2013)
Oncogene
, vol.32
, pp. 4139-4147
-
-
Hudson, R.S.1
Yi, M.2
Esposito, D.3
Glynn, S.A.4
Starks, A.M.5
Yang, Y.6
Schetter, A.J.7
Watkins, S.K.8
Hurwitz, A.A.9
Dorsey, T.H.10
Stephens, R.M.11
Croce, C.M.12
Ambs, S.13
-
60
-
-
74249123570
-
The miR-34 family in cancer and apoptosis
-
Hermeking H. 2010. The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193-199. https://doi.org/10.1038/cdd.2009.56
-
(2010)
Celldeath Differ
, vol.17
, pp. 193-199
-
-
Hermeking, H.1
-
61
-
-
0026024632
-
The E7 gene of humanpapillomavirus type 16 is sufficient for immortalization of human epithelial cells
-
Halbert CL, Demers GW, Galloway DA. 1991. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 65:473-478
-
(1991)
J Virol
, vol.65
, pp. 473-478
-
-
Halbert, C.L.1
Demers, G.W.2
Galloway, D.A.3
-
62
-
-
84904410674
-
Characterization of the Merkel cell carcinoma miRNome
-
289548
-
Ning MS, Kim AS, Prasad N, Levy SE, Zhang H, Andl T. 2014. Characterization of the Merkel cell carcinoma miRNome. J Skin Cancer 2014: 289548. https://doi.org/10.1155/2014/289548
-
(2014)
J Skin Cancer
, vol.2014
-
-
Ning, M.S.1
Kim, A.S.2
Prasad, N.3
Levy, S.E.4
Zhang, H.5
Andl, T.6
-
63
-
-
0028857136
-
Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus
-
Klipper-Aurbach Y, Wasserman M, Braunspiegel-Weintrob N, Borstein D, Peleg S, Assa S, Karp M, Benjamini Y, Hochberg Y, Laron Z. 1995. Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus. Med Hypotheses 45:486-490. https://doi.org/10.1016/0306-9877(95)90228-7
-
(1995)
Med Hypotheses
, vol.45
, pp. 486-490
-
-
Klipper-Aurbach, Y.1
Wasserman, M.2
Braunspiegel-Weintrob, N.3
Borstein, D.4
Peleg, S.5
Assa, S.6
Karp, M.7
Benjamini, Y.8
Hochberg, Y.9
Laron, Z.10
-
64
-
-
62349130698
-
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
-
Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25
-
(2009)
Genome Biol
, vol.10
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
65
-
-
65449136284
-
TopHat: Discovering splicejunctions with RNA-Seq
-
Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111. https://doi.org/10.1093/bioinformatics/btp120
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
Pachter, L.2
Salzberg, S.L.3
-
66
-
-
68549104404
-
The sequence alignment/map format and SAMtools
-
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
-
(2009)
Bioinformatics
, vol.25
, pp. 2078-2079
-
-
Li, H.1
Handsaker, B.2
Wysoker, A.3
Fennell, T.4
Ruan, J.5
Homer, N.6
Marth, G.7
Abecasis, G.8
Durbin, R.9
-
67
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. https://doi.org/10.1186/gb-2010-11-3-r25
-
(2010)
Genome Biol
, vol.11
-
-
Robinson, M.D.1
Oshlack, A.2
|