메뉴 건너뛰기




Volumn 9, Issue 4, 2015, Pages 702-715

Mining the Situation: Spatiotemporal Traffic Prediction with Big Data

Author keywords

big data; context aware; online learning; spatiotemporal; Traffic prediction

Indexed keywords

FORECASTING; REGIONAL PLANNING; SOCIAL NETWORKING (ONLINE); TRAFFIC CONTROL; URBAN PLANNING;

EID: 84926504011     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2015.2389196     Document Type: Article
Times cited : (53)

References (28)
  • 2
    • 84929343070 scopus 로고    scopus 로고
    • Annual vehicle miles of travel
    • Annual vehicle miles of travel, Federal Highway Administration, 2003-02-14 [Online]. Available: http://www.fhwa.dot.gov/ohim/onh00/graph1.htm
    • Federal Highway Administration 2003-02-14
  • 4
    • 80052647853 scopus 로고    scopus 로고
    • Discovering spatio-temporal causal interactions in traffic data streams
    • W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, Discovering spatio-temporal causal interactions in traffic data streams, in Proc. KDD, 2011, pp. 1010-1018.
    • (2011) Proc. KDD , pp. 1010-1018
    • Liu, W.1    Zheng, Y.2    Chawla, S.3    Yuan, J.4    Xing, X.5
  • 6
    • 84874062810 scopus 로고    scopus 로고
    • Utilizing real-world transportation data for accurate traffic prediction
    • IEEE Computer Society
    • B. Pan, U. Demiryurek, and C. Shahabi, Utilizing real-world transportation data for accurate traffic prediction, in Proc. ICDM'12, Washington, DC, USA, 2012, pp. 595-604, IEEE Computer Society.
    • (2012) Proc. ICDM'12, Washington, DC, USA , pp. 595-604
    • Pan, B.1    Demiryurek, U.2    Shahabi, C.3
  • 7
    • 84894671526 scopus 로고    scopus 로고
    • Forecasting spatiotemporal impact of traffic incidents on road networks
    • B. Pan, U. Demiryurek, C. Shahabi, and C. Gupta, Forecasting spatiotemporal impact of traffic incidents on road networks, in Proc. ICDM, 2013, pp. 587-596.
    • (2013) Proc ICDM , pp. 587-596
    • Pan, B.1    Demiryurek, U.2    Shahabi, C.3    Gupta, C.4
  • 8
    • 85046524306 scopus 로고    scopus 로고
    • Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting
    • S. Lee and D. B. Fambro, Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting, in Proc. TRR98, 1998.
    • (1998) Proc. TRR98
    • Lee, S.1    Fambro, D.B.2
  • 10
    • 0024855829 scopus 로고
    • Incident characteristics, frequency, and duration on a high volume urban freeway
    • G. Giuliano, Incident characteristics, frequency, and duration on a high volume urban freeway, Transportation Res. Part A: General, vol. 23, no. 5, 1989.
    • (1989) Transportation Res. Part A: General , vol.23 , Issue.5
    • Giuliano, G.1
  • 11
    • 84883754023 scopus 로고    scopus 로고
    • A methodological approach for estimating temporal and spatial extent of delays caused by freeway accidents
    • Sep.
    • Y. Chung and W. Recker, A methodological approach for estimating temporal and spatial extent of delays caused by freeway accidents, IEEE Trans. Intell. Transport. Syst., vol. 13, no. 3, pp. 1454-1461, Sep. 2012.
    • (2012) IEEE Trans. Intell. Transport. Syst , vol.13 , Issue.3 , pp. 1454-1461
    • Chung, Y.1    Recker, W.2
  • 14
    • 61349168240 scopus 로고    scopus 로고
    • The components of congestion: Delay from incidents, special events, lane closures, weather, potential ramp metering gain, and demand
    • J. Kwon, M. Mauch, and P. Varaiya, The components of congestion: delay from incidents, special events, lane closures, weather, potential ramp metering gain, and demand, in Proc. 85th Annu, Meeting Transport. Res., 2006.
    • (2006) Proc. 85th Annu, Meeting Transport. Res
    • Kwon, J.1    Mauch, M.2    Varaiya, P.3
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 16
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, Selective sampling using the query by committee algorithm, Mach. Learn., vol. 28, no. 2-3, pp. 133-168, 1997.
    • (1997) Mach. Learn , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 18
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Inf. Comput., vol. 108, no. 2, pp. 212-261, 1994.
    • (1994) Inf. Comput , vol.108 , Issue.2 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 19
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
    • A. Blum, Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain, Mach. Learn., vol. 26, no. 1, pp. 5-23, 1997.
    • (1997) Mach. Learn , vol.26 , Issue.1 , pp. 5-23
    • Blum, A.1
  • 20
    • 0032137328 scopus 로고    scopus 로고
    • Tracking the best expert
    • M. Herbster and M. K. Warmuth, Tracking the best expert, Mach. Learn., vol. 32, no. 2, pp. 151-178, 1998.
    • (1998) Mach. Learn , vol.32 , Issue.2 , pp. 151-178
    • Herbster, M.1    Warmuth, M.K.2
  • 21
    • 0141921552 scopus 로고    scopus 로고
    • Online ensemble learning: An empirical study
    • A. Fern and R. Givan, Online ensemble learning: An empirical study, Mach. Learn., vol. 53, no. 1-2, pp. 71-109, 2003.
    • (2003) Mach. Learn , vol.53 , Issue.1-2 , pp. 71-109
    • Fern, A.1    Givan, R.2
  • 22
    • 79952748054 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, Pegasos: Primal estimated sub-gradient solver for SVM, Math. Program., vol. 127, no. 1, pp. 3-30, 2011.
    • (2011) Math. Program , vol.127 , Issue.1 , pp. 3-30
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3    Cotter, A.4
  • 25
    • 84904749323 scopus 로고    scopus 로고
    • Distributed online learning in social recommender systems
    • Aug.
    • C. Tekin, S. Zhang, M. V. D. Schaar, Distributed online learning in social recommender systems, IEEE J. Sel. Topics Signal Process., vol. 8, no. 4, pp. 638-652, Aug. 2014.
    • (2014) IEEE J. Sel. Topics Signal Process , vol.8 , Issue.4 , pp. 638-652
    • Tekin, C.1    Zhang, S.2    Schaar, M.V.D.3
  • 27
    • 84954230168 scopus 로고    scopus 로고
    • Timely popularity forecasting based on social networks
    • J. Xu, M. v. d. Schaar, J. Liu, and H. Li, Timely popularity forecasting based on social networks, in Proc. IEEE Infocom, 2015.
    • (2015) Proc IEEE Infocom
    • Xu, J.1    Schaar, M.V.D.2    Liu, J.3    Li, H.4
  • 28
    • 84933039265 scopus 로고    scopus 로고
    • Discover the expert: Context-adaptive expert selection for medical diagnosis
    • to be published
    • C. Tekin M. V. D. Schaar, Discover the expert: Context-adaptive expert selection for medical diagnosis, IEEE J. Emerging Topics Comput., 2015, to be published.
    • (2015) IEEE J. Emerging Topics Comput
    • Tekin, C.1    Schaar, M.V.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.