메뉴 건너뛰기




Volumn 13-17-August-2016, Issue , 2016, Pages 1525-1534

Latent space model for road networks to predict time-varying traffic

Author keywords

Latent space model; Real time traffic forecasting; Road network

Indexed keywords

COMPLEX NETWORKS; DATA MINING; FORECASTING; GRAPHIC METHODS; HIGHWAY TRAFFIC CONTROL; INTELLIGENT SYSTEMS; MOTOR TRANSPORTATION; ROADS AND STREETS; TIME VARYING NETWORKS; TOPOLOGY; TRAFFIC CONTROL; TRANSPORTATION;

EID: 84985029815     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2939672.2939860     Document Type: Conference Paper
Times cited : (199)

References (33)
  • 3
    • 84985040599 scopus 로고    scopus 로고
    • Online passive-aggressive algorithms for non-negative matrix factorization and completion
    • M. Blondel, Y. Kubo, and U. Naonori. Online passive-aggressive algorithms for non-negative matrix factorization and completion. In AISTATS, 2014.
    • (2014) AISTATS
    • Blondel, M.1    Kubo, Y.2    Naonori, U.3
  • 4
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized nonnegative matrix factorization for data representation. TPAMI, 33 (8): 1548-1560, 2011.
    • (2011) TPAMI , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 5
    • 65449165081 scopus 로고    scopus 로고
    • Semi-supervised learning with data calibration for long-term time series forecasting
    • ACM
    • H. Cheng and P.-N. Tan. Semi-supervised learning with data calibration for long-term time series forecasting. In KDD, pages 133-141. ACM, 2008.
    • (2008) KDD , pp. 133-141
    • Cheng, H.1    Tan, P.-N.2
  • 6
    • 84894661984 scopus 로고    scopus 로고
    • Modeling temporal adoptions using dynamic matrix factorization
    • IEEE
    • F. C. T. Chua, R. J. Oentaryo, and E.-P. Lim. Modeling temporal adoptions using dynamic matrix factorization. In ICDM, pages 91-100. IEEE, 2013.
    • (2013) ICDM , pp. 91-100
    • Chua, F.C.T.1    Oentaryo, R.J.2    Lim, E.-P.3
  • 9
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • ACM
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In KDD, pages 126-135. ACM, 2006.
    • (2006) KDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 10
    • 84869869112 scopus 로고    scopus 로고
    • Non-parametric regression for space-time forecasting under missing data
    • J. Haworth and T. Cheng. Non-parametric regression for space-time forecasting under missing data. Computers, Environment and Urban Systems, 36 (6): 538-550, 2012.
    • (2012) Computers, Environment and Urban Systems , vol.36 , Issue.6 , pp. 538-550
    • Haworth, J.1    Cheng, T.2
  • 11
    • 84985002230 scopus 로고    scopus 로고
    • HERE. https: //company. here. com/here/.
  • 12
    • 85167616132 scopus 로고    scopus 로고
    • Trajectory regression on road networks
    • T. Idé and M. Sugiyama. Trajectory regression on road networks. In AAAI, 2011.
    • (2011) AAAI
    • Idé, T.1    Sugiyama, M.2
  • 16
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2001.
    • (2001) NIPS , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 84874062810 scopus 로고    scopus 로고
    • Utilizing real-world transportation data for accurate traffic prediction
    • B. Pan, U. Demiryurek, and C. Shahabi. Utilizing real-world transportation data for accurate traffic prediction. ICDM, pages 595-604, 2012.
    • (2012) ICDM , pp. 595-604
    • Pan, B.1    Demiryurek, U.2    Shahabi, C.3
  • 19
    • 57749178570 scopus 로고    scopus 로고
    • A bpca based missing value imputing method for traffic flow volume data
    • IEEE
    • L. Qu, Y. Zhang, J. Hu, L. Jia, and L. Li. A bpca based missing value imputing method for traffic flow volume data. In Intelligent Vehicles Symposium, 2008 IEEE, pages 985-990. IEEE, 2008.
    • (2008) Intelligent Vehicles Symposium, 2008 IEEE , pp. 985-990
    • Qu, L.1    Zhang, Y.2    Hu, J.3    Jia, L.4    Li, L.5
  • 20
    • 84893603400 scopus 로고    scopus 로고
    • Time series forecasting using distribution enhanced linear regression
    • G. Ristanoski, W. Liu, and J. Bailey. Time series forecasting using distribution enhanced linear regression. In PAKDD, pages 484-495. 2013.
    • (2013) PAKDD , pp. 484-495
    • Ristanoski, G.1    Liu, W.2    Bailey, J.3
  • 21
    • 84874255476 scopus 로고    scopus 로고
    • Modeling dynamic behavior in large evolving graphs
    • R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson. Modeling dynamic behavior in large evolving graphs. In WSDM, pages 667-676, 2013.
    • (2013) WSDM , pp. 667-676
    • Rossi, R.A.1    Gallagher, B.2    Neville, J.3    Henderson, K.4
  • 22
    • 84858043041 scopus 로고    scopus 로고
    • Learning evolving and emerging topics in social media: A dynamic nmf approach with temporal regularization
    • ACM
    • A. Saha and V. Sindhwani. Learning evolving and emerging topics in social media: a dynamic nmf approach with temporal regularization. In WSDM, pages 693-702. ACM, 2012.
    • (2012) WSDM , pp. 693-702
    • Saha, A.1    Sindhwani, V.2
  • 23
    • 0001790593 scopus 로고
    • Depth-first search and linear graph algorithms
    • R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1 (2): 146-160, 1972.
    • (1972) SIAM Journal on Computing , vol.1 , Issue.2 , pp. 146-160
    • Tarjan, R.1
  • 25
    • 84907024583 scopus 로고    scopus 로고
    • Travel time estimation of a path using sparse trajectories
    • ACM
    • Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of a path using sparse trajectories. In KDD, pages 25-34. ACM, 2014.
    • (2014) KDD , pp. 25-34
    • Wang, Y.1    Zheng, Y.2    Xue, Y.3
  • 26
    • 84863772459 scopus 로고    scopus 로고
    • Shortest path and distance queries on road networks: An experimental evaluation
    • L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and distance queries on road networks: An experimental evaluation. VLDB, 5 (5): 406-417, 2012.
    • (2012) VLDB , vol.5 , Issue.5 , pp. 406-417
    • Wu, L.1    Xiao, X.2    Deng, D.3    Cong, G.4    Zhu, A.D.5    Zhou, S.6
  • 28
    • 84882718728 scopus 로고    scopus 로고
    • Travel cost inference from sparse, spatio temporally correlated time series using markov models
    • B. Yang, C. Guo, and C. S. Jensen. Travel cost inference from sparse, spatio temporally correlated time series using markov models. Proceedings of the VLDB Endowment, 6 (9): 769-780, 2013.
    • (2013) Proceedings of the VLDB Endowment , vol.6 , Issue.9 , pp. 769-780
    • Yang, B.1    Guo, C.2    Jensen, C.S.3
  • 29
    • 84866017161 scopus 로고    scopus 로고
    • Overlapping community detection via bounded nonnegative matrix tri-factorization
    • ACM
    • Y. Zhang and D.-Y. Yeung. Overlapping community detection via bounded nonnegative matrix tri-factorization. In KDD, pages 606-614. ACM, 2012.
    • (2012) KDD , pp. 606-614
    • Zhang, Y.1    Yeung, D.-Y.2
  • 30
    • 84893420232 scopus 로고    scopus 로고
    • Time-dependent trajectory regression on road networks via multi-task learning
    • J. Zheng and L. M. Ni. Time-dependent trajectory regression on road networks via multi-task learning. In AAAI, 2013.
    • (2013) AAAI
    • Zheng, J.1    Ni, L.M.2
  • 31
    • 84957544261 scopus 로고    scopus 로고
    • Smiler: A semi-lazy time series prediction system for sensors
    • J. Zhou and A. K. Tung. Smiler: A semi-lazy time series prediction system for sensors. SIGMOD '15, pages 1871-1886, 2015.
    • (2015) SIGMOD '15 , pp. 1871-1886
    • Zhou, J.1    Tung, A.K.2
  • 32
    • 84904307698 scopus 로고    scopus 로고
    • Tripartite graph clustering for dynamic sentiment analysis on social media
    • L. Zhu, A. Galstyan, J. Cheng, and K. Lerman. Tripartite graph clustering for dynamic sentiment analysis on social media. In SIGMOD'14, pages 1531-1542.
    • SIGMOD'14 , pp. 1531-1542
    • Zhu, L.1    Galstyan, A.2    Cheng, J.3    Lerman, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.