메뉴 건너뛰기




Volumn 24, Issue 3, 2014, Pages 1461-1485

Estimation of treatment policies based on functional predictors

Author keywords

Empirical processes; Functional data analysis; Inverse treatment probability weighting; Locally efficient estimation

Indexed keywords


EID: 84919875390     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: 10.5705/ss.2012.196     Document Type: Article
Times cited : (38)

References (46)
  • 1
    • 0017744903 scopus 로고
    • Selecting optimal treatment in clinical trials using covariate information
    • Byar D. P. and Corle, D. K. (1977). Selecting optimal treatment in clinical trials using covariate information. J. Chronic Diseases 30, 445-459.
    • (1977) J. Chronic Diseases , vol.30 , pp. 445-459
    • Byar, D.P.1    Corle, D.K.2
  • 2
    • 84886585591 scopus 로고    scopus 로고
    • Evaluating subject-level incremental values of new markers for risk classification rule
    • Cai, T., Tian, L., Lloyd-Jones, D. and Wei, L.J. (2013). Evaluating subject-level incremental values of new markers for risk classification rule. Lifetime Data Anal. 19, 547-567
    • (2013) Lifetime Data Anal. , vol.19 , pp. 547-567
    • Cai, T.1    Tian, L.2    Lloyd-Jones, D.3    Wei, L.J.4
  • 3
    • 77952816212 scopus 로고    scopus 로고
    • Calibrating parametric subjectspecific risk estimation
    • Cai, T., Tian, L., Uno, H., Solomon, S. D. andWei, L. J. (2010). Calibrating parametric subjectspecific risk estimation. Biometrika 92, 389-404.
    • (2010) Biometrika , vol.92 , pp. 389-404
    • Cai, T.1    Tian, L.2    Uno, H.3    Solomon, S.D.4    Wei, L.J.5
  • 4
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068.
    • (2008) Nature , vol.455 , pp. 1061-1068
    • Cancer Genome Atlas Research Network1
  • 5
    • 0041459525 scopus 로고    scopus 로고
    • Spline estimators for the functional linear model
    • Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13, 571-591.
    • (2003) Statist. Sinica , vol.13 , pp. 571-591
    • Cardot, H.1    Ferraty, F.2    Sarda, P.3
  • 7
    • 4143134783 scopus 로고    scopus 로고
    • Finding predictive gene groups from microarray data
    • Dettling, M. and Bühlmann, P. (2004). Finding predictive gene groups from microarray data. J. Multivariate Anal. 90, 106-131.
    • (2004) J. Multivariate Anal. , vol.90 , pp. 106-131
    • Dettling, M.1    Bühlmann, P.2
  • 8
    • 52449101590 scopus 로고    scopus 로고
    • Cognitive therapy vs medications for depression: Treatment outcomes and neural mechanisms
    • DeRubeis, R. J., Siegle, G. J. and Hollon, S. D. (2008). Cognitive therapy vs. medications for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience 9, 788-796.
    • (2008) Nature Reviews Neuroscience , vol.9 , pp. 788-796
    • Derubeis, R.J.1    Siegle, G.J.2    Hollon, S.D.3
  • 9
    • 62449212467 scopus 로고    scopus 로고
    • Survival analysis with high-dimensional covariates: An application in microarray studies
    • Engler, D. and Li, Y. (2009). Survival analysis with high-dimensional covariates: an application in microarray studies. Statist. Appl. Genet. Mol. Biol. 1, Article 14.
    • (2009) Statist. Appl. Genet. Mol. Biol. , vol.1
    • Engler, D.1    Li, Y.2
  • 11
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultra-high dimensional feature space (with discussion)
    • Fan, J. and Lv, J. (2008). Sure independence screening for ultra-high dimensional feature space (with discussion). J. Roy. Statist. Soc. Ser. B 70, 849-911.
    • (2008) J. Roy. Statist. Soc. Ser. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 12
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • Gail, M. and Simon, R. (1985). Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41, 361-372.
    • (1985) Biometrics , vol.41 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 13
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low sample size settings, with applications to microarray gene expression data
    • Gui, J. and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional and low sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 14
    • 34247366346 scopus 로고    scopus 로고
    • The use of transcriptomic biomarkers for personalized medicine
    • Heidecker, B. and Hare, J. M. (2007). The use of transcriptomic biomarkers for personalized medicine. Heart Failure Rev. 12, 1-11.
    • (2007) Heart Failure Rev. , vol.12 , pp. 1-11
    • Heidecker, B.1    Hare, J.M.2
  • 18
    • 84878993519 scopus 로고    scopus 로고
    • A CLT for empirical processes involving timedependent data
    • Kuelbs, J., Kurtz, T. and Zinn, J. (2013). A CLT for empirical processes involving timedependent data. Ann. Probab. 41, 785-816.
    • (2013) Ann. Probab. , vol.41 , pp. 785-816
    • Kuelbs, J.1    Kurtz, T.2    Zinn, J.3
  • 19
    • 80054681541 scopus 로고    scopus 로고
    • Adaptive confidence intervals for the test error in classification
    • Laber, E. and Murphy, S. A. (2011). Adaptive confidence intervals for the test error in classification. J. Amer. Statist. Assoc. 106, 904-913.
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 904-913
    • Laber, E.1    Murphy, S.A.2
  • 21
    • 84886467569 scopus 로고    scopus 로고
    • Variable selection for optimal treatment decision
    • Lu, W, Zhang, H. H. and Zeng, D. (2013). Variable selection for optimal treatment decision. Statist. Meth. Medical Res. 22, 493-504.
    • (2013) Statist. Meth. Medical Res. , vol.22 , pp. 493-504
    • Lu, W.1    Zhang, H.H.2    Zeng, D.3
  • 22
    • 0036192067 scopus 로고    scopus 로고
    • Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials
    • Lunceford, J. K., Davidian, M. and Tsiatis, A. A. (2002). Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials. Biometrics 58, 48-57.
    • (2002) Biometrics , vol.58 , pp. 48-57
    • Lunceford, J.K.1    Davidian, M.2    Tsiatis, A.A.3
  • 24
    • 0038107066 scopus 로고    scopus 로고
    • Optimal dynamic treatment regimes (with discussion)
    • Murphy, S. A. (2003). Optimal dynamic treatment regimes (with discussion). J. Roy. Statist. Soc. Ser. B 65, 331-366.
    • (2003) J. Roy. Statist. Soc. Ser. B , vol.65 , pp. 331-366
    • Murphy, S.A.1
  • 25
    • 23244437791 scopus 로고    scopus 로고
    • A generalization error for Q-learning
    • Murphy, S. A. (2005). A generalization error for Q-learning. J. Mach. Learn. Res. 6, 1073-1097.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1073-1097
    • Murphy, S.A.1
  • 26
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Ann. Statist. 39, 1180-1210.
    • (2011) Ann. Statist. , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 28
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods - Application to control of the healthy worker survivor effect
    • Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Mathematical Modelling 7, 1393-1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.M.1
  • 29
    • 0003135327 scopus 로고    scopus 로고
    • Marginal structural models versus structural nested models as tools for causal inference
    • (Edited by M. E. Halloran and D. Berry). Springer, New York
    • Robins, J. M. (2000). Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology, the Environment, and Clinical Trials (Edited by M. E. Halloran and D. Berry), 95-134. Springer, New York.
    • (2000) Statistical Models in Epidemiology, the Environment, and Clinical Trials , pp. 95-134
    • Robins, J.M.1
  • 31
    • 0021078618 scopus 로고
    • Interaction between prognostic factors and treatment
    • Shuster, J. and Van Eys, J. (1983). Interaction between prognostic factors and treatment. Controlled Clinical Trials 4, 209-214.
    • (1983) Controlled Clinical Trials , vol.4 , pp. 209-214
    • Shuster, J.1    Van Eys, J.2
  • 32
    • 10944237674 scopus 로고    scopus 로고
    • Evaluating markers for selecting a patient's treatment
    • Song, X. and Pepe, M. S. (2004). Evaluating markers for selecting a patient's treatment. Biometrics 60, 874-883.
    • (2004) Biometrics , vol.60 , pp. 874-883
    • Song, X.1    Pepe, M.S.2
  • 33
    • 80955180971 scopus 로고    scopus 로고
    • Evaluating markers for treatment selection based on survival time
    • Song, X. and Zhou, X.-H. (2011). Evaluating markers for treatment selection based on survival time. Statist. Medicine 30, 2251-2264.
    • (2011) Statist. Medicine , vol.30 , pp. 2251-2264
    • Song, X.1    Zhou, X.-H.2
  • 35
    • 0034732660 scopus 로고    scopus 로고
    • Evaluating multiple treatment courses in clinical trials
    • Thall, P. F., Millikan, R. E. and Sung, H. G. (2000). Evaluating multiple treatment courses in clinical trials. Statist. Medicine 19, 1011-1028.
    • (2000) Statist. Medicine , vol.19 , pp. 1011-1028
    • Thall, P.F.1    Millikan, R.E.2    Sung, H.G.3
  • 36
    • 0036489042 scopus 로고    scopus 로고
    • Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials
    • Thall, P. F., Sung, H. G. and Estey, E. H. (2002). Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials. J. Amer. Statist. Assoc. 97, 29-39.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 29-39
    • Thall, P.F.1    Sung, H.G.2    Estey, E.H.3
  • 37
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 32, 135-166.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.32 , pp. 135-166
    • Tibshirani, R.1
  • 40
    • 33644973742 scopus 로고    scopus 로고
    • Semiparametric efficient estimation of survival distribution for treatment policies in two-stage randomization designs in clinical trials with censored data
    • Wahed, A. S. and Tsiatis, A. A. (2006). Semiparametric efficient estimation of survival distribution for treatment policies in two-stage randomization designs in clinical trials with censored data. Biometrika 93, 163-177.
    • (2006) Biometrika , vol.93 , pp. 163-177
    • Wahed, A.S.1    Tsiatis, A.A.2
  • 41
    • 36849065442 scopus 로고    scopus 로고
    • History-adjusted marginal structural models and statically-optimal dynamic treatment regimens
    • van der Laan, M. J., Petersen, M. L. and Joffe, M.M. (2005). History-adjusted marginal structural models and statically-optimal dynamic treatment regimens. Internat. J. Biostatist. 1, Article 4.
    • (2005) Internat. J. Biostatist. , vol.1
    • Van Der Laan, M.J.1    Petersen, M.L.2    Joffe, M.M.3
  • 44
    • 41649114164 scopus 로고    scopus 로고
    • Enabling personalized cancer medicine through analysis of gene expression patterns
    • van 't Veer, L. J. and Bernards, R. (2008). Enabling personalized cancer medicine through analysis of gene expression patterns. Nature 452, 564-570.
    • (2008) Nature , vol.452 , pp. 564-570
    • Van 't Veer, L.J.1    Bernards, R.2
  • 45
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. Biometrics 68, 1010-1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 46
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individualized treatment rules using outcome weighted learning
    • Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. J. Amer. Statist. Assoc. 107, 1106-1118.
    • (2012) J. Amer. Statist. Assoc. , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, A.J.3    Kosorok, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.