-
1
-
-
0034198996
-
Observable operator models for discrete stochastic time series
-
H. Jaeger, "Observable operator models for discrete stochastic time series," Neural Comput., Vol. 12, no. 6, pp. 1371-1398, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.6
, pp. 1371-1398
-
-
Jaeger, H.1
-
2
-
-
70349239285
-
A bound on modeling error in observable operator models and an associated learning algorithm
-
M.-J. Zhao, H. Jaeger, and M. Thon, "A bound on modeling error in observable operator models and an associated learning algorithm," Neural Comput., Vol. 21, no. 9, pp. 2687-2712, 2009.
-
(2009)
Neural Comput.
, vol.21
, Issue.9
, pp. 2687-2712
-
-
Zhao, M.-J.1
Jaeger, H.2
Thon, M.3
-
3
-
-
85019266102
-
Discrete-time, discrete-valued observable operator models: A tutorial
-
H. Jaeger, "Discrete-time, discrete-valued observable operator models: a tutorial," tech. rep., International University Bremen, 2012.
-
(2012)
Tech. Rep., International University Bremen
-
-
Jaeger, H.1
-
4
-
-
84898982129
-
Predictive representations of state
-
M. L. Littman, R. S. Sutton, and S. Singh, "Predictive representations of state," in Adv. Neural. Inf. Process. Syst. 14 (NIPS 2001), pp. 1555-1561, 2001.
-
(2001)
Adv. Neural. Inf. Process. Syst. 14 (NIPS 2001)
, pp. 1555-1561
-
-
Littman, M.L.1
Sutton, R.S.2
Singh, S.3
-
5
-
-
31844457132
-
Predictive state representations: A new theory for modeling dynamical systems
-
S. Singh, M. James, and M. Rudary, "Predictive state representations: A new theory for modeling dynamical systems," in Proc. 20th Conf. Uncertainty Artif. Intell. (UAI 2004), pp. 512-519, 2004.
-
(2004)
Proc. 20th Conf. Uncertainty Artif. Intell. (UAI 2004)
, pp. 512-519
-
-
Singh, S.1
James, M.2
Rudary, M.3
-
7
-
-
84898066687
-
A spectral algorithm for learning hidden Markov models
-
D. Hsu, S. M. Kakade, and T. Zhang, "A spectral algorithm for learning hidden Markov models," in Proc. 22nd Conf. Learning Theory (COLT 2009), pp. 964-971, 2005.
-
(2005)
Proc. 22nd Conf. Learning Theory (COLT 2009)
, pp. 964-971
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
8
-
-
84862280155
-
Reduced-rank hidden Markov models
-
S. Siddiqi, B. Boots, and G. Gordon, "Reduced-rank hidden Markov models," in Proc. 13th Intl. Conf. Artif. Intell. Stat. (AISTATS 2010), Vol. 9, pp. 741-748, 2010.
-
(2010)
Proc. 13th Intl. Conf. Artif. Intell. Stat. (AISTATS 2010)
, vol.9
, pp. 741-748
-
-
Siddiqi, S.1
Boots, B.2
Gordon, G.3
-
9
-
-
2342490453
-
Learning functions represented as multiplicity automata
-
A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio, "Learning functions represented as multiplicity automata," J. ACM, Vol. 47, no. 3, pp. 506-530, 2000.
-
(2000)
J. ACM
, vol.47
, Issue.3
, pp. 506-530
-
-
Beimel, A.1
Bergadano, F.2
Bshouty, N.H.3
Kushilevitz, E.4
Varricchio, S.5
-
10
-
-
84923822469
-
Links between multiplicity automata, observable operator, models and predictive state representations - A unified learning framework
-
M. Thon and H. Jaeger, "Links between multiplicity automata, observable operator, models and predictive state representations - a unified learning framework," J. Mach. Learn. Res., Vol. 16, pp. 103-147, 2015.
-
(2015)
J. Mach. Learn. Res.
, vol.16
, pp. 103-147
-
-
Thon, M.1
Jaeger, H.2
-
11
-
-
79957488000
-
Markov models of molecular kinetics: Generation and validation
-
J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé, "Markov models of molecular kinetics: Generation and validation," J. Chem. Phys., Vol. 134, p. 174105, 2011.
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 174105
-
-
Prinz, J.-H.1
Wu, H.2
Sarich, M.3
Keller, B.4
Senne, M.5
Held, M.6
Chodera, J.D.7
Schütte, C.8
Noé, F.9
-
13
-
-
84898952981
-
Approximate Gaussian process inference for the drift function in stochastic differential equations
-
A. Ruttor, P. Batz, and M. Opper, "Approximate Gaussian process inference for the drift function in stochastic differential equations," in Adv. Neural. Inf. Process. Syst. 26 (NIPS 2013), pp. 2040-2048, 2013.
-
(2013)
Adv. Neural. Inf. Process. Syst. 26 (NIPS 2013)
, pp. 2040-2048
-
-
Ruttor, A.1
Batz, P.2
Opper, M.3
-
14
-
-
84938782020
-
Multidimensional langevin modeling of nonoverdamped dynamics
-
N. Schaudinnus, B. Bastian, R. Hegger, and G. Stock, "Multidimensional langevin modeling of nonoverdamped dynamics," Phys. Rev. Lett., Vol. 115, no. 5, p. 050602, 2015.
-
(2015)
Phys. Rev. Lett.
, vol.115
, Issue.5
, pp. 050602
-
-
Schaudinnus, N.1
Bastian, B.2
Hegger, R.3
Stock, G.4
-
15
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
L. R. Rabiner, "A tutorial on hidden markov models and selected applications in speech recognition," Proc. IEEE, Vol. 77, no. 2, pp. 257-286, 1989.
-
(1989)
Proc. IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
16
-
-
84903361996
-
Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules
-
F. Noé, H. Wu, J.-H. Prinz, and N. Plattner, "Projected and hidden markov models for calculating kinetics and metastable states of complex molecules," J. Chem. Phys., Vol. 139, p. 184114, 2013.
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 184114
-
-
Noé, F.1
Wu, H.2
Prinz, J.-H.3
Plattner, N.4
-
17
-
-
84862287145
-
State-space inference and learning with Gaussian processes
-
R. D. Turner, M. P. Deisenroth, and C. E. Rasmussen, "State-space inference and learning with Gaussian processes," in Proc. 13th Intl. Conf. Artif. Intell. Stat. (AISTATS 2010), pp. 868-875, 2010.
-
(2010)
Proc. 13th Intl. Conf. Artif. Intell. Stat. (AISTATS 2010)
, pp. 868-875
-
-
Turner, R.D.1
Deisenroth, M.P.2
Rasmussen, C.E.3
-
19
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comp., Vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comp.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
20
-
-
84943789088
-
Projected metastable Markov processes and their estimation with observable operator models
-
H. Wu, J.-H. Prinz, and F. Noé, "Projected metastable markov processes and their estimation with observable operator models," J. Chem. Phys., Vol. 143, no. 14, p. 144101, 2015.
-
(2015)
J. Chem. Phys.
, vol.143
, Issue.14
, pp. 144101
-
-
Wu, H.1
Prinz, J.-H.2
Noé, F.3
-
21
-
-
0034623787
-
Screen savers of the world unite
-
M. Shirts and V. S. Pande, "Screen savers of the world unite," Science, Vol. 290, pp. 1903-1904, 2000.
-
(2000)
Science
, vol.290
, pp. 1903-1904
-
-
Shirts, M.1
Pande, V.S.2
-
23
-
-
0030539336
-
Markov chain Monte Carlo convergence diagnostics: A comparative review
-
M. K. Cowles and B. P. Carlin, "Markov chain monte carlo convergence diagnostics: a comparative review," J. Am. Stat. Assoc., Vol. 91, no. 434, pp. 883-904, 1996.
-
(1996)
J. Am. Stat. Assoc.
, vol.91
, Issue.434
, pp. 883-904
-
-
Cowles, M.K.1
Carlin, B.P.2
-
26
-
-
77956540831
-
Hilbert space embeddings of hidden Markov models
-
B. Boots, S. M. Siddiqi, G. Gordon, and A. Smola, "Hilbert space embeddings of hidden markov models," in Proc. 27th Intl. Conf. on Mach. Learn. (ICML 2010), 2010.
-
(2010)
Proc. 27th Intl. Conf. on Mach. Learn. (ICML 2010)
-
-
Boots, B.1
Siddiqi, S.M.2
Gordon, G.3
Smola, A.4
-
27
-
-
14344256568
-
Learning low dimensional predictive representations
-
ACM
-
M. Rosencrantz, G. Gordon, and S. Thrun, "Learning low dimensional predictive representations," in Proc. 22nd Intl. Conf. on Mach. Learn. (ICML 2004), pp. 88-95, ACM, 2004.
-
(2004)
Proc. 22nd Intl. Conf. on Mach. Learn. (ICML 2004)
, pp. 88-95
-
-
Rosencrantz, M.1
Gordon, G.2
Thrun, S.3
-
29
-
-
84864074862
-
Efficient estimation of OOMs
-
H. Jaeger, M. Zhao, and A. Kolling, "Efficient estimation of OOMs," in Adv. Neural. Inf. Process. Syst. 18 (NIPS 2005), pp. 555-562, 2005.
-
(2005)
Adv. Neural. Inf. Process. Syst. 18 (NIPS 2005)
, pp. 555-562
-
-
Jaeger, H.1
Zhao, M.2
Kolling, A.3
-
30
-
-
84886081379
-
Identification of slow molecular order parameters for Markov model construction
-
G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé, "Identification of slow molecular order parameters for markov model construction," J. Chem. Phys., Vol. 139, no. 1, p. 015102, 2013.
-
(2013)
J. Chem. Phys.
, vol.139
, Issue.1
, pp. 015102
-
-
Perez-Hernandez, G.1
Paul, F.2
Giorgino, T.3
De Fabritiis, G.4
Noé, F.5
|