메뉴 건너뛰기




Volumn 16, Issue , 2015, Pages 103-147

Links between multiplicity automata, observable operator models and predictive state representations | a unified learning framework

Author keywords

Hidden markov models; Multiplicity automata; Observable operator models; Predictive state representations; Spectral learning algorithms

Indexed keywords

LEARNING ALGORITHMS; MARKOV PROCESSES; RANDOM PROCESSES; SPEECH RECOGNITION; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84923822469     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (41)

References (87)
  • 2
    • 0001841122 scopus 로고
    • On the computational complexity of approximating distributions by probabilistic automata
    • Naoki Abe and Manfred K. Warmuth. On the computational complexity of approximating distributions by probabilistic automata. Machine Learning, 9:205{260, 1992.
    • (1992) Machine Learning , vol.9 , pp. 205-260
    • Naoki, A.1    Warmuth, M.K.2
  • 3
    • 84893458195 scopus 로고    scopus 로고
    • A method of moments for mixture models and hidden markov models
    • In Shie Mannor, Nathan Srebro, and Robert C. Williamson, editors, of JMLR Workshop & Conference Proceedings
    • Animashree Anandkumar, Daniel Hsu, and Sham M. Kakade. A method of moments for mixture models and hidden markov models. In Shie Mannor, Nathan Srebro, and Robert C. Williamson, editors, Proceedings of the 25th Annual Conference on Learning Theory (COLT 2012), volume 23 of JMLR Workshop & Conference Proceedings, pages 33.1{33.34, 2012.
    • (2012) Proceedings of the 25th Annual Conference on Learning Theory (COLT 2012) , vol.23 , pp. 331-3334
    • Anandkumar, A.1    Hsu, D.2    Kakade, S.M.3
  • 4
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319{342, 1987.
    • (1987) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 5
    • 84867133071 scopus 로고    scopus 로고
    • Quadratic weighted automata: Spectral algorithm and likelihood maximization
    • Chun-Nan Hsu and Wee Sun Lee, editors, of JMLR Workshop & Con- ference Proceedings
    • Raphael Bailly. Quadratic weighted automata: Spectral algorithm and likelihood maximization.In Chun-Nan Hsu and Wee Sun Lee, editors, Proceedings of the 3rd Asian Conference on Machine Learning (ACML 2011), volume 20 of JMLR Workshop & Con- ference Proceedings, pages 147{163, 2011.
    • (2011) Proceedings of the 3rd Asian Conference on Machine Learning (ACML 2011) , vol.20 , pp. 147-163
    • Bailly, R.1
  • 6
    • 71149118396 scopus 로고    scopus 로고
    • Grammatical inference as a principal component analysis problem
    • Andrea Pohoreckyj Danyluk, L-eon Bottou, and Michael L. Littman, editors, of ACM Proceedings
    • Raphael Bailly, Fran-cois Denis, and Liva Ralivola. Grammatical inference as a principal component analysis problem. In Andrea Pohoreckyj Danyluk, L-eon Bottou, and Michael L. Littman, editors, Proceedings of the 26th International Conference on Ma- chine Learning (ICML 2009), volume 382 of ACM Proceedings, pages 33{40, 2009.
    • (2009) Proceedings of the 26th International Conference on Ma- Chine Learning (ICML 2009) , vol.382 , pp. 33-40
    • Bailly, R.1    Denis, F.2    Ralivola, L.3
  • 7
    • 85015240334 scopus 로고    scopus 로고
    • Unsupervised spectral learning of nite state transducers
    • C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Curran Associates, Inc
    • Raphael Bailly, Xavier Carreras, and Ariadna Quattoni. Unsupervised spectral learning of nite state transducers. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26 (NIPS 2013), pages 800{808. Curran Associates, Inc., 2013.
    • (2013) Advances in Neural Information Processing Systems 26 (NIPS 2013) , pp. 800-808
    • Bailly, R.1    Carreras, X.2    Quattoni, A.3
  • 8
    • 84877776210 scopus 로고    scopus 로고
    • Spectral learning of general weighted automata via constrained matrix completion
    • Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, L-eon Bottou, and Kilian Q. Weinberger, editors
    • Borja Balle and Mehryar Mohri. Spectral learning of general weighted automata via constrained matrix completion. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, L-eon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Infor- mation Processing Systems 25 (NIPS 2012), pages 2168{2176, 2012.
    • (2012) Advances in Neural Infor- Mation Processing Systems 25 (NIPS 2012) , pp. 2168-2176
    • Balle, B.1    Mohri, M.2
  • 9
    • 80052400030 scopus 로고    scopus 로고
    • A spectral learning algorithm for nite state transducers
    • Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, of Lecture Notes in Computer Science, Springer
    • Borja Balle, Ariadna Quattoni, and Xavier Carreras. A spectral learning algorithm for nite state transducers. In Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Machine Learning and Knowledge Discovery in Databases - European Conference (ECML/PKDD 2011), Proceedings, Part I, volume 6911 of Lecture Notes in Computer Science, pages 156{171. Springer, 2011.
    • (2011) Machine Learning and Knowledge Discovery in Databases - European Conference (ECML/PKDD 2011), Proceedings , vol.6911 , pp. 156-171
    • Balle, B.1    Quattoni, A.2    Carreras, X.3
  • 11
    • 84903884130 scopus 로고    scopus 로고
    • Spectral learning of weighted automata { a forward-backward perspective
    • Borja Balle, Xavier Carreras, Franco M. Luque, and Ariadna Quattoni. Spectral learning of weighted automata { a forward-backward perspective. Machine Learning, 96(1-2):33{63, 2014.
    • (2014) Machine Learning , vol.96 , Issue.1-2 , pp. 33-63
    • Balle, B.1    Carreras, X.2    Luque, F.M.3    Quattoni, A.4
  • 14
    • 85013943335 scopus 로고
    • Learning behaviors of automata from multiplicity and equivalence queries
    • Maurizio A. Bonuccelli, Pierluigi Crescenzi, and Rossella Petreschi, editors, of Lecture Notes in Computer Science, Springer
    • Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multiplicity and equivalence queries. In Maurizio A. Bonuccelli, Pierluigi Crescenzi, and Rossella Petreschi, editors, Proceedings of the 2nd Italian conference on Algorithms and Complexity (CIAC 1994), volume 778 of Lecture Notes in Computer Science, pages 54{62. Springer, 1994.
    • (1994) Proceedings of the 2nd Italian Conference on Algorithms and Complexity (CIAC 1994) , vol.778 , pp. 54-62
    • Bergadano, F.1    Varricchio, S.2
  • 17
    • 85162041278 scopus 로고    scopus 로고
    • Predictive state temporal dierence learning
    • J. La-erty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, MIT Press
    • Byron Boots and Geo-rey J. Gordon. Predictive state temporal dierence learning. In J. La-erty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23 (NIPS 2010), pages 271{279. MIT Press, 2010.
    • (2010) Advances in Neural Information Processing Systems 23 (NIPS 2010) , pp. 271-279
    • Boots, B.1    Gordon, G.J.2
  • 18
    • 80055034438 scopus 로고    scopus 로고
    • An online spectral learning algorithm for partially observable nonlinear dynamical systems
    • Wolfram Burgard and Dan Roth, editors, AAAI Press
    • Byron Boots and Georey J. Gordon. An online spectral learning algorithm for partially observable nonlinear dynamical systems. In Wolfram Burgard and Dan Roth, editors, Proceedings of the 25th AAAI Conference on Arti-cial Intelligence (AAAI 2011). AAAI Press, 2011.
    • (2011) Proceedings of the 25th AAAI Conference on Arti-cial Intelligence (AAAI 2011)
    • Boots, B.1    Gordon, G.J.2
  • 25
    • 0041345571 scopus 로고    scopus 로고
    • Context-free recognition with weighted automata
    • Corinna Cortes and Mehryar Mohri. Context-free recognition with weighted automata. Grammars, 3(2/3):133{150, 2000.
    • (2000) Grammars , vol.3 , Issue.2-3 , pp. 133-150
    • Cortes, C.1    Mohri, M.2
  • 26
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the em algorithm
    • Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39 (1):1{38, 1977.
    • (1977) Journal of the Royal Statistical Society , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 28
    • 55849136941 scopus 로고    scopus 로고
    • On rational stochastic languages
    • Francois Denis and Yann Esposito. On rational stochastic languages. Fundamenta Informaticae, 86(1):41{77, 2008.
    • (2008) Fundamenta Informaticae , vol.86 , Issue.1 , pp. 41-77
    • Denis, F.1    Esposito, Y.2
  • 29
    • 33746063205 scopus 로고    scopus 로고
    • Learning rational stochastic languages
    • Gabor Lugosi and Hans-Ulrich Simon, editors, of Lecture Notes in Computer Science, Springer
    • Francois Denis, Yann Esposito, and Amaury Habrard. Learning rational stochastic languages.In Gabor Lugosi and Hans-Ulrich Simon, editors, Proceedings of the 19th Annual Conference on Learning Theory (COLT 2006), volume 4005 of Lecture Notes in Computer Science, pages 274{288. Springer, 2006.
    • (2006) Proceedings of the 19th Annual Conference on Learning Theory (COLT 2006) , vol.4005 , pp. 274-288
    • Denis, F.1    Esposito, Y.2    Habrard, A.3
  • 31
    • 19944415906 scopus 로고    scopus 로고
    • Links between probabilistic automata and hidden markov models: Probability distributions, learning models and induction algorithms
    • Pierre Dupont, Francois Denis, and Yann Esposito. Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms. Pattern Recognition, 38(9):1349{1371, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.9 , pp. 1349-1371
    • Dupont, P.1    Denis, F.2    Esposito, Y.3
  • 34
    • 0001478658 scopus 로고
    • On the identiability problem for functions of nite markov chains
    • Edgar J. Gilbert. On the identiability problem for functions of nite Markov chains. The Annals of Mathematical Statistics, 30(3):688{697, 1959.
    • (1959) The Annals of Mathematical Statistics , vol.30 , Issue.3 , pp. 688-697
    • Gilbert, E.J.1
  • 36
    • 84897547631 scopus 로고    scopus 로고
    • Modelling sparse dynamical systems with compressed predictive state representations
    • Sanjoy Dasgupta and David Mcallester, editors, of JMLR Workshop & Conference Proceedings
    • William L. Hamilton, Mahdi M. Fard, and Joelle Pineau. Modelling sparse dynamical systems with compressed predictive state representations. In Sanjoy Dasgupta and David Mcallester, editors, Proceedings of the 30th International Conference on Machine Learn- ing (ICML 2013), volume 28 of JMLR Workshop & Conference Proceedings, pages 178{ 186, 2013.
    • (2013) Proceedings of the 30th International Conference on Machine Learn- Ing (ICML 2013) , vol.28 , pp. 178-186
    • Hamilton, W.L.1    Fard, M.M.2    Pineau, J.3
  • 38
    • 0000582955 scopus 로고
    • On stochastic processes derived from markov chains
    • Alex Heller. On stochastic processes derived from Markov chains. The Annals of Mathe- matical Statistics, 36(4):1286{1291, 1965.
    • (1965) The Annals of Mathe- Matical Statistics , vol.36 , Issue.4 , pp. 1286-1291
    • Heller, A.1
  • 40
    • 0039085286 scopus 로고
    • Unpublished doctoral dissertation, University of Tokyo, Bunkyo-ku, Tokyo
    • Hisashi Ito. An Algebraic Study of Discrete Stochastic Systems. Unpublished doctoral dissertation, University of Tokyo, Bunkyo-ku, Tokyo, 1992.
    • (1992) An Algebraic Study of Discrete Stochastic Systems
    • Ito, H.1
  • 41
    • 0026837871 scopus 로고
    • Identi-ability of hidden markov information sources and their minimum degrees of freedom
    • Hisashi Ito, Shun ichi Amari, and Kingo Kobayashi. Identi-ability of hidden Markov information sources and their minimum degrees of freedom. IEEE Transactions on Informa tion Theory, 38(2):324{333, 1992.
    • (1992) IEEE Transactions on Informa Tion Theory , vol.38 , Issue.2 , pp. 324-333
    • Ito, H.1    Amari, S.I.2    Kobayashi, K.3
  • 43
    • 0040269290 scopus 로고    scopus 로고
    • Discrete-time, discrete-valued observable operator models: A tutorial
    • GMD Forschungszentrum Informationstechnik, Sankt Augustin, Germany
    • Herbert Jaeger. Discrete-time, discrete-valued observable operator models: A tutorial. Technical Report 42, GMD Forschungszentrum Informationstechnik, Sankt Augustin, Germany, 1998.
    • (1998) Technical Report
    • Jaeger, H.1
  • 44
    • 72249122338 scopus 로고    scopus 로고
    • Modeling and learning continuous-valued stochastic processes with ooms
    • GMD Forschungszentrum Informationstechnik, Sankt Augustin, Germany
    • Herbert Jaeger. Modeling and learning continuous-valued stochastic processes with OOMs. GMD Report 102, GMD Forschungszentrum Informationstechnik, Sankt Augustin, Germany, 2000a.
    • (2000) GMD Report 102
    • Jaeger, H.1
  • 45
    • 0034198996 scopus 로고    scopus 로고
    • Observable operator models for discrete stochastic time series
    • Herbert Jaeger. Observable operator models for discrete stochastic time series. Neural Computation, 12(6):1371{1398, 2000b.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1371-1398
    • Jaeger, H.1
  • 46
    • 84923779638 scopus 로고    scopus 로고
    • Ecient estimation of ooms
    • Herbert Jaeger, MingJie Zhao, and Andreas Kolling. Ecient estimation of ooms. In Weiss et al. (2006), pages 555{562.
    • (2006) Weiss et Al , pp. 555-562
    • Jaeger, H.1    Zhao, M.2    Kolling, A.3
  • 48
    • 55849117869 scopus 로고    scopus 로고
    • Learning and discovery of predictive state representations in dynamical systems with reset
    • Michael R. James and Satinder P. Singh. Learning and discovery of predictive state representations in dynamical systems with reset. In Brodley (2004), pages 53{60.
    • (2004) Brodley , pp. 53-60
    • James, M.R.1    Singh, S.P.2
  • 49
    • 29344459019 scopus 로고    scopus 로고
    • Planning in models that combine memory with predictive representations of state
    • In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI Press
    • Michael R. James and Satinder P. Singh. Planning in models that combine memory with predictive representations of state. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings of the 20th National Conference on Arti-cial Intelligence (AAAI 2005), pages 987{992. AAAI Press, 2005.
    • (2005) Proceedings of the 20th National Conference on Arti-cial Intelligence (AAAI 2005) , pp. 987-992
    • James, M.R.1    Singh, S.P.2
  • 51
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially observable stochastic domains. Articial Intelligence, 101(1-2):99{134, 1998.
    • (1998) Articial Intelligence , vol.101 , Issue.1-2 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2    Cassandra, A.R.3
  • 54
    • 84898982129 scopus 로고    scopus 로고
    • Predictive representations of state
    • Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, MIT Press
    • Michael L. Littman, Richard S. Sutton, and Satinder P. Singh. Predictive representations of state. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural Information Processing Systems 14 (NIPS 2001), pages 1555{1561. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems 14 (NIPS 2001) , pp. 1555-1561
    • Littman, M.L.1    Sutton, R.S.2    Singh, S.P.3
  • 55
    • 33847313774 scopus 로고    scopus 로고
    • Left vs right representations for solving weighted low-rank approximation problems
    • Ivan Markovsky and Sabine Van Huel. Left vs right representations for solving weighted low-rank approximation problems. Linear Algebra and its Applications, 422(2-3):540{552, 2007a.
    • (2007) Linear Algebra and its Applications , vol.422 , Issue.2-3 , pp. 540-552
    • Markovsky, I.1    Huel, S.V.2
  • 56
    • 34249825770 scopus 로고    scopus 로고
    • Overview of total least-squares methods
    • Ivan Markovsky and Sabine Van Huel. Overview of total least-squares methods. Signal Processing, 87(10):2283{2302, 2007b.
    • (2007) Signal Processing , vol.87 , Issue.10 , pp. 2283-2302
    • Markovsky, I.1    Huel, S.V.2
  • 57
    • 84923767467 scopus 로고    scopus 로고
    • Online discovery and learning of predictive state representations
    • Peter McCracken and Michael H. Bowling. Online discovery and learning of predictive state representations. In Weiss et al. (2006).
    • (2006) Weiss et Al
    • Mccracken, P.1    Bowling, M.H.2
  • 58
    • 0036460907 scopus 로고    scopus 로고
    • Weighted nite-state transducers in speech recognition
    • Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted nite-state transducers in speech recognition. Computer Speech & Language, 16(1):69{88, 2002.
    • (2002) Computer Speech & Language , vol.16 , Issue.1 , pp. 69-88
    • Mohri, M.1    Pereira, F.2    Riley, M.3
  • 59
    • 0000134862 scopus 로고    scopus 로고
    • Quantum automata and quantum grammars
    • Cristopher Moore and James P. Crutcheld. Quantum automata and quantum grammars. Theoretical Computer Science, 237(1-2):275{306, 2000.
    • (2000) Theoretical Computer Science , vol.237 , Issue.1-2 , pp. 275-306
    • Moore, C.1    Crutcheld, J.P.2
  • 60
    • 0028529868 scopus 로고
    • A polynomial time learning algorithm for recognizable series
    • E77-D
    • Hiroyuki Ohnishi, Hiroyuki Seki, and Tadao Kasami. A polynomial time learning algorithm for recognizable series. IEICE Transactions on Information and Systems, E77-D(10): 1077{1085, 1994.
    • (1994) IEICE Transactions on Information and Systems , Issue.10 , pp. 1077-1085
    • Ohnishi, H.1    Seki, H.2    Kasami, T.3
  • 61
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257{286, 1989.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 62
    • 84886534529 scopus 로고    scopus 로고
    • Spectral learning of sequence taggers over continuous sequences
    • Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezn-y, editors, Proceedings, Part I, of Lecture Notes in Computer Science, Springer
    • Adria Recasens and Ariadna Quattoni. Spectral learning of sequence taggers over continuous sequences. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezn-y, editors, Machine Learning and Knowledge Discovery in Databases - European Conference (ECML/PKDD 2013), Proceedings, Part I, volume 8188 of Lecture Notes in Computer Science, pages 289{304. Springer, 2013.
    • (2013) Machine Learning and Knowledge Discovery in Databases - European Conference (ECML/PKDD 2013) , vol.8188 , pp. 289-304
    • Recasens, A.1    Quattoni, A.2
  • 63
    • 14344256568 scopus 로고    scopus 로고
    • Learning low dimensional predictive representations
    • Matthew Rosencrantz, Geo-rey J. Gordon, and Sebastian Thrun. Learning low dimensional predictive representations. In Brodley (2004), pages 695{702.
    • (2004) Brodley , pp. 695-702
    • Rosencrantz, M.1    Gordon, G.J.2    Thrun, S.3
  • 64
    • 84898929664 scopus 로고    scopus 로고
    • Em algorithms for pca and spca
    • Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, MIT Press
    • Sam Roweis. EM algorithms for PCA and SPCA. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems 10 (NIPS 1997), pages 626{632. MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems 10 (NIPS 1997) , pp. 626-632
    • Roweis, S.1
  • 65
    • 34250720035 scopus 로고    scopus 로고
    • Predictive linear-gaussian models of controlled stochastic dynamical systems
    • Matthew Rudary and Satinder P. Singh. Predictive linear-Gaussian models of controlled stochastic dynamical systems. In Cohen and Moore (2006), pages 777{784.
    • Cohen and Moore (2006) , pp. 777-784
    • Rudary, M.1    Singh, S.P.2
  • 68
    • 31844454358 scopus 로고    scopus 로고
    • A nonlinear predictive state representation
    • In S. Thrun S. Becker and K. Obermayer, editors, MIT Press
    • Matthew R. Rudary and Satinder Singh. A nonlinear predictive state representation. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Process- ing Systems 15 (NIPS 2002), pages 855{862. MIT Press, 2003.
    • (2003) Advances in Neural Information Process- Ing Systems 15 (NIPS 2002) , pp. 855-862
    • Rudary, M.R.1    Singh, S.2
  • 70
    • 50549180615 scopus 로고
    • On the de-nition of a family of automata
    • Marcel Paul Schutzenberger. On the de-nition of a family of automata. Information and Control, 4(2-3):245{270, 1961.
    • (1961) Information and Control , vol.4 , Issue.2-3 , pp. 245-270
    • Schutzenberger, M.P.1
  • 75
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{ 1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Leslie, G.V.1
  • 78
    • 33749235166 scopus 로고    scopus 로고
    • Kernel predictive linear gaussian models for nonlinear stochastic dynamical systems
    • David Wingate and Satinder P. Singh. Kernel predictive linear Gaussian models for nonlinear stochastic dynamical systems. In Cohen and Moore (2006), pages 1017{1024.
    • (2006) Cohen and Moore , pp. 1017-1024
    • Wingate, D.1    Singh, S.P.2
  • 80
    • 85162026819 scopus 로고    scopus 로고
    • Exponential family predictive representations of state
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
    • David Wingate and Satinder P. Singh. Exponential family predictive representations of state. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20 (NIPS 2007), pages 1617{1624. MIT Press, 2008a.
    • (2008) Advances in Neural Information Processing Systems 20 (NIPS 2007) , pp. 1617-1624
    • Wingate, D.1    Singh, S.P.2
  • 81
    • 56449115195 scopus 로고    scopus 로고
    • Eciently learning linear-linear exponential family predictive representations of state
    • David Wingate and Satinder P. Singh. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, of ACM Proceedings
    • David Wingate and Satinder P. Singh. Eciently learning linear-linear exponential family predictive representations of state. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the 25th International Conference on Machine Learning (ICML 2008), volume 307 of ACM Proceedings, pages 1176{1183, 2008b.
    • (2008) Proceedings of the 25th International Conference on Machine Learning (ICML 2008) , vol.307 , pp. 1176-1183
    • David, W.1    Satinder, P.S.2
  • 83
    • 34250753339 scopus 로고    scopus 로고
    • Predictive state representations with options
    • Britton Wolfe and Satinder P. Singh. Predictive state representations with options. In Cohen and Moore (2006), pages 1025{1032.
    • Cohen and Moore (2006) , pp. 1025-1032
    • Wolfe, B.1    Singh, S.P.2
  • 84
    • 0003336518 scopus 로고
    • The concept of system
    • aggregate, and state in system theory. InLot Asker Zadeh and Elijah Polak, editors, McGraw-Hill, New York
    • LotAsker Zadeh. The concept of system, aggregate, and state in system theory. InLot Asker Zadeh and Elijah Polak, editors, System Theory, volume 8 of Inter-University Electronics Series, pages 3{42. McGraw-Hill, New York, 1969.
    • (1969) System Theory, Volume 8 of Inter-University Electronics Series , pp. 3-42
    • Zadeh, L.1
  • 85
    • 77955997233 scopus 로고    scopus 로고
    • Norm observable operator models
    • MingJie Zhao and Herbert Jaeger. Norm observable operator models. Neural Computation, 22(7):1927{1959, 2010.
    • (2010) Neural Computation , vol.22 , Issue.7 , pp. 1927-1959
    • Zhao, M.1    Jaeger, H.2
  • 86
    • 70349239285 scopus 로고    scopus 로고
    • A bound on modeling error in observable operator models and an associated learning algorithm
    • MingJie Zhao, Herbert Jaeger, and Michael Thon. A bound on modeling error in observable operator models and an associated learning algorithm. Neural Computation, 21(9):2687{ 2712, 2009a.
    • (2009) Neural Computation , vol.21 , Issue.9 , pp. 2687-2712
    • Zhao, M.1    Jaeger, H.2    Thon, M.3
  • 87
    • 72249091866 scopus 로고    scopus 로고
    • Making the error-controlling algorithm of observable operator models constructive
    • MingJie Zhao, Herbert Jaeger, and Michael Thon. Making the error-controlling algorithm of observable operator models constructive. Neural Computation, 21(12):3460{3486, 2009b.
    • (2009) Neural Computation , vol.21 , Issue.12 , pp. 3460-3486
    • Zhao, M.1    Jaeger, H.2    Thon, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.