-
1
-
-
0000802938
-
Markovian models for sequential data
-
Bengio, Y. (1999). Markovian models for sequential data. Neural Computing Surveys, 2, 129–162.
-
(1999)
Neural Computing Surveys
, vol.2
, pp. 129-162
-
-
Bengio, Y.1
-
2
-
-
55049095024
-
Hidden Markov models and other finite state automata for sequence processing
-
M. A. Arbin (Ed), (2nd ed). Cambridge, MA: MIT Press
-
Bourlard, H., & Bengio, S. (2002). Hidden Markov models and other finite state automata for sequence processing. In M. A. Arbin (Ed.), The handbook of brain theory and neural networks (2nd ed.). Cambridge, MA: MIT Press.
-
(2002)
The handbook of brain theory and neural networks
-
-
Bourlard, H.1
Bengio, S.2
-
3
-
-
34250707982
-
Learning predictive state representations using non-blind policies
-
New York: ACM
-
Bowling, M., McCracken, P., James, M., Neufeld, J., & Wilkinson, D. (2006). Learning predictive state representations using non-blind policies. In Proceedings of the 23rd International Conference on Machine Learning (ICML) (pp. 129–136). New York: ACM.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning (ICML)
, pp. 129-136
-
-
Bowling, M.1
McCracken, P.2
James, M.3
Neufeld, J.4
Wilkinson, D.5
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM-algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, 39(1), 1–38.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A. P.1
Laird, N. M.2
Rubin, D. B.3
-
5
-
-
0003516147
-
-
Cambridge: Cambridge University Press
-
Durbin, R., Eddy, S., Krogh, A., & Mitchinson, G. (2000). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press.
-
(2000)
Biological sequence analysis: Probabilistic models of proteins and nucleic acids
-
-
Durbin, R.1
Eddy, S.2
Krogh, A.3
Mitchinson, G.4
-
7
-
-
34447302314
-
Asymptotic mean stationarity of sources with finite evolution dimension
-
Faigle, U., & Schönhuth, A. (2007). Asymptotic mean stationarity of sources with finite evolution dimension. IEEE Transactions on Information Theory, 53, 2342– 2348.
-
(2007)
IEEE Transactions on Information Theory
, vol.53
, pp. 2342-2348
-
-
Faigle, U.1
Schönhuth, A.2
-
12
-
-
0034198996
-
Observable operator models for discrete stochastic time series
-
Jaeger, H. (2000b). Observable operator models for discrete stochastic time series. Neural Computation, 12(6), 1371–1398.
-
(2000)
Neural Computation
, vol.12
, Issue.6
, pp. 1371-1398
-
-
Jaeger, H.1
-
13
-
-
65749099041
-
Learning observable operator models via the ES algorithm
-
S. Haykin, J. Principe, T. Sejnowski, & J. McWhirter (Eds), Cambridge, MA: MIT Press
-
Jaeger, H., Zhao, M., Kretzschmar, K., Oberstein, T. G., Popovici, D., & Kolling, A. (2005). Learning observable operator models via the ES algorithm. In S. Haykin, J. Principe, T. Sejnowski, & J. McWhirter (Eds.), New directions in statistical signal processing: From systems to brains. Cambridge, MA: MIT Press.
-
(2005)
New directions in statistical signal processing: From systems to brains
-
-
Jaeger, H.1
Zhao, M.2
Kretzschmar, K.3
Oberstein, T. G.4
Popovici, D.5
Kolling, A.6
-
14
-
-
55849117869
-
Learning and discovery of predictive state representations in dynamical systems with reset
-
(ICML: –). New York: ACM
-
James, M. R., & Singh, S. (2004). Learning and discovery of predictive state representations in dynamical systems with reset. In Proceedings of the 21st International Conference on Machine Learning (ICML: pp. 53–60). New York: ACM.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 53-60
-
-
James, M. R.1
Singh, S.2
-
17
-
-
0003028425
-
Nonlinear programming
-
Berkeley: University of California Press
-
Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In Proceedings of 2nd Berkeley Symposium (pp. 481–492). Berkeley: University of California Press.
-
(1951)
Proceedings of 2nd Berkeley Symposium
, pp. 481-492
-
-
Kuhn, H. W.1
Tucker, A. W.2
-
18
-
-
1942449765
-
Predictive representation of state
-
T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds), –). Cambridge, MA: MIT Press
-
Littman, M. L., & Sutton, R. S. (2001). Predictive representation of state. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 1555–1561). Cambridge, MA: MIT Press.
-
(2001)
Advances in neural information processing systems
, vol.14
, pp. 1555-1561
-
-
Littman, M. L.1
Sutton, R. S.2
-
19
-
-
84864070408
-
Online discovery and learning of predictive state representations
-
Y. Weiss, B. Schölkopf, & J. Platt (Eds), –). Cambridge, MA: MIT Press
-
McCracken, P., & Bowling, M. (2005). Online discovery and learning of predictive state representations. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 875–882). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, vol.18
, pp. 875-882
-
-
McCracken, P.1
Bowling, M.2
-
20
-
-
84961291543
-
Characteristic Lyapunov exponents and smooth ergodic theory
-
Pesin, Y. B. (1977). Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surveys, 32(4), 55–114.
-
(1977)
Russ. Math. Surveys
, vol.32
, Issue.4
, pp. 55-114
-
-
Pesin, Y. B.1
-
21
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L. R.1
-
24
-
-
1942452236
-
Learning predictive state representations
-
New York: ACM
-
Singh, S., Littman, M. L., Jong, N. K., Pardoe, D., & Stone, P. (2003). Learning predictive state representations. In Proceedings of the 20th International Conference on Machine Learning (ICML, pp. 712–719). New York: ACM.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML
, pp. 712-719
-
-
Singh, S.1
Littman, M. L.2
Jong, N. K.3
Pardoe, D.4
Stone, P.5
-
25
-
-
0001704377
-
On-line construction of suffix trees
-
Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3), 249– 260.
-
(1995)
Algorithmica
, vol.14
, Issue.3
, pp. 249-260
-
-
Ukkonen, E.1
-
28
-
-
31844453029
-
Learning predictive state representations in dynamical systems without reset
-
New York: ACM
-
Wolfe, B., James, M. R., & Singh, S. P. (2005). Learning predictive state representations in dynamical systems without reset. In Proceedings of the 22nd International Conference on Machine Learning (ICML, pp. 985–992). New York: ACM.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning (ICML
, pp. 985-992
-
-
Wolfe, B.1
James, M. R.2
Singh, S. P.3
|