메뉴 건너뛰기




Volumn 40, Issue 8, 2017, Pages 913-929

Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure

Author keywords

[No Author keywords available]

Indexed keywords

CORRELATION; DATA SET; ECOLOGICAL APPROACH; HIERARCHICAL SYSTEM; INTERPOLATION; LITERATURE REVIEW; MODEL VALIDATION; PERFORMANCE ASSESSMENT; PHYLOGENETICS; SPATIAL ANALYSIS; TEMPORAL ANALYSIS;

EID: 85014318718     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/ecog.02881     Document Type: Review
Times cited : (1286)

References (101)
  • 1
    • 84873079248 scopus 로고    scopus 로고
    • Statistical testing of a new testate amoeba-based transfer function for water-table depth reconstruction on ombrotrophic peatlands in northeastern Canada and Maine, United States
    • Amesbury, M. J. et al. 2013. Statistical testing of a new testate amoeba-based transfer function for water-table depth reconstruction on ombrotrophic peatlands in northeastern Canada and Maine, United States. – J. Quat. Sci. 28: 27–39.
    • (2013) J. Quat. Sci , vol.28 , pp. 27-39
    • Amesbury, M.J.1
  • 2
    • 84884339864 scopus 로고    scopus 로고
    • A framework for using niche models to estimate impacts of climate change on species distributions
    • Anderson, R. P. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. – Ann. N. Y. Acad. Sci. 1297: 8–28.
    • (2013) Ann. N. Y. Acad. Sci , vol.1297 , pp. 8-28
    • Anderson, R.P.1
  • 3
    • 24344464067 scopus 로고    scopus 로고
    • Validation of species-climate impact models under climate change
    • Araújo, M. B. et al. 2005. Validation of species-climate impact models under climate change. – Global Change Biol. 11: 1504–1513.
    • (2005) Global Change Biol , vol.11 , pp. 1504-1513
    • Araújo, M.B.1
  • 4
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • Arlot, S. and Celisse, A. 2010. A survey of cross-validation procedures for model selection. – Stat. Surv. 4: 40–79.
    • (2010) Stat. Surv , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 5
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. – Ecol. Modell. 157: 101–118.
    • (2002) Ecol. Modell , vol.157 , pp. 101-118
    • Austin, M.P.1
  • 6
    • 85026694574 scopus 로고    scopus 로고
    • A new method for evaluating species distribution models, 94th Ecol. Soc. Am. Ann. Meeting
    • BahnV. 2009. A new method for evaluating species distribution models. – 94th Ecol. Soc. Am. Ann. Meeting.
    • (2009)
    • Bahn, V.1
  • 7
    • 35348923149 scopus 로고    scopus 로고
    • Can niche-based distribution models outperform spatial interpolation? – Global Ecol
    • Bahn, V. and McGill, B. J. 2007. Can niche-based distribution models outperform spatial interpolation? – Global Ecol. Biogeogr. 16: 733–742.
    • (2007) Biogeogr , vol.16 , pp. 733-742
    • Bahn, V.1    McGill, B.J.2
  • 8
    • 84874319269 scopus 로고    scopus 로고
    • Testing the predictive performance of distribution models
    • Bahn, V. and McGill, B. J. 2013. Testing the predictive performance of distribution models. – Oikos 122: 321–331.
    • (2013) Oikos , vol.122 , pp. 321-331
    • Bahn, V.1    McGill, B.J.2
  • 9
    • 84857652807 scopus 로고    scopus 로고
    • On the use of cross- validation for time series predictor evaluation
    • Bergmeir, C. and Benitez, J. M. 2012. On the use of cross- validation for time series predictor evaluation. – Inf. Sci. 191: 192–213.
    • (2012) Inf. Sci , vol.191 , pp. 192-213
    • Bergmeir, C.1    Benitez, J.M.2
  • 10
    • 0035958646 scopus 로고    scopus 로고
    • Noisy clockwork: time series analysis of population fluctuations in animals
    • Bjørnstad, O. N. and Grenfell, B. T. 2001. Noisy clockwork: time series analysis of population fluctuations in animals. – Science 293: 638–643.
    • (2001) Science , vol.293 , pp. 638-643
    • Bjørnstad, O.N.1    Grenfell, B.T.2
  • 11
    • 84878676961 scopus 로고    scopus 로고
    • Space can substitute for time in predicting climate-change effects on biodiversity
    • Blois, J. L. et al. 2013. Space can substitute for time in predicting climate-change effects on biodiversity. – Proc. Natl Acad. Sci. USA 110: 9374–9379.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 9374-9379
    • Blois, J.L.1
  • 12
    • 0037202455 scopus 로고    scopus 로고
    • Evaluating resource selection functions
    • Boyce, M. S. et al. 2002. Evaluating resource selection functions. – Ecol. Modell. 157: 281–300.
    • (2002) Ecol. Modell , vol.157 , pp. 281-300
    • Boyce, M.S.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. – Machine Learning 45: 5–32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow, N. E. and Clayton, D. G. 1993. Approximate inference in generalized linear mixed models. – J. Am. Stat. Ass. 88: 9–25.
    • (1993) J. Am. Stat. Ass , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 16
    • 84858073352 scopus 로고    scopus 로고
    • Measuring ecological niche overlap from occurrence and spatial environmental data
    • Broennimann, O. et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. – Global Ecol. Biogeogr. 21: 481–497.
    • (2012) Global Ecol. Biogeogr , vol.21 , pp. 481-497
    • Broennimann, O.1
  • 17
    • 33644901572 scopus 로고    scopus 로고
    • Spatial and temporal variations in species occurrence rate affect the accuracy of occurrence models
    • Bulluck, L. et al. 2006. Spatial and temporal variations in species occurrence rate affect the accuracy of occurrence models. – Global Ecol. Biogeogr. 15: 27–38.
    • (2006) Global Ecol. Biogeogr , vol.15 , pp. 27-38
    • Bulluck, L.1
  • 18
    • 0039012351 scopus 로고
    • A cross-validatory method for dependent data
    • Burman, P. et al. 1994. A cross-validatory method for dependent data. – Biometrika 81: 351–358.
    • (1994) Biometrika , vol.81 , pp. 351-358
    • Burman, P.1
  • 19
    • 79953302175 scopus 로고    scopus 로고
    • Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis
    • Buston, P. M. and Elith, J. 2011. Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. – J. Anim. Ecol. 80: 528–538.
    • (2011) J. Anim. Ecol , vol.80 , pp. 528-538
    • Buston, P.M.1    Elith, J.2
  • 20
    • 84864284841 scopus 로고    scopus 로고
    • Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: an assessment of reliability
    • Capinha, C. et al. 2012. Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: an assessment of reliability. – Biol. Invas. 14: 1737–1751.
    • (2012) Biol. Invas , vol.14 , pp. 1737-1751
    • Capinha, C.1
  • 21
    • 84869447921 scopus 로고    scopus 로고
    • Spatial data for modelling and management of freshwater ecosystems
    • Chee, Y. E. and Elith, J. 2012. Spatial data for modelling and management of freshwater ecosystems. – Int. J. Geogr. Inf. Sci. 26: 2123–2140.
    • (2012) Int. J. Geogr. Inf. Sci , vol.26 , pp. 2123-2140
    • Chee, Y.E.1    Elith, J.2
  • 22
    • 79951865821 scopus 로고    scopus 로고
    • Validation of elk resource selection models with spatially independent data
    • Coe, P. K. et al. 2011. Validation of elk resource selection models with spatially independent data. – J. Wildl. Manage. 75: 159–170.
    • (2011) J. Wildl. Manage , vol.75 , pp. 159-170
    • Coe, P.K.1
  • 23
    • 33646685333 scopus 로고    scopus 로고
    • A trait-based test for habitat filtering: convex hull volume
    • Cornwell, W. K. et al. 2006. A trait-based test for habitat filtering: convex hull volume. – Ecology 87: 1465–1471.
    • (2006) Ecology , vol.87 , pp. 1465-1471
    • Cornwell, W.K.1
  • 25
    • 35848930781 scopus 로고    scopus 로고
    • Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
    • Dormann, C. F. et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. – Ecography 30: 609–628.
    • (2007) Ecography , vol.30 , pp. 609-628
    • Dormann, C.F.1
  • 26
    • 84873641979 scopus 로고    scopus 로고
    • Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents
    • Eiserhardt, W. L. et al. 2013. Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. – Sci. Rep. UK 3: 1164.
    • (2013) Sci. Rep. UK , vol.3 , pp. 1164
    • Eiserhardt, W.L.1
  • 27
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models
    • Elith, J. and Graham, C. H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. – Ecography 32: 66–77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 28
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species’ distributions from occurrence data
    • Elith, J. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. – Ecography 29: 129–151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 29
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith, J. et al. 2008. A working guide to boosted regression trees. – J. Anim. Ecol. 77: 802–813.
    • (2008) J. Anim. Ecol , vol.77 , pp. 802-813
    • Elith, J.1
  • 30
    • 78650029343 scopus 로고    scopus 로고
    • The art of modelling range-shifting species
    • Elith, J. et al. 2010. The art of modelling range-shifting species. – Meth. Ecol Evol 1: 330–342.
    • (2010) Meth. Ecol Evol , vol.1 , pp. 330-342
    • Elith, J.1
  • 31
    • 0022203256 scopus 로고
    • Phylogenies and the comparative method
    • Felsenstein, J. 1985. Phylogenies and the comparative method. – Am. Nat. 125: 1–15.
    • (1985) Am. Nat , vol.125 , pp. 1-15
    • Felsenstein, J.1
  • 32
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding, A. H. and Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. – Environ. Conserv. 24: 38–49.
    • (1997) Environ. Conserv , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 33
    • 84926660394 scopus 로고    scopus 로고
    • Bias correction in species distribution models: pooling survey and collection data for multiple species
    • Fithian, W. et al. 2015. Bias correction in species distribution models: pooling survey and collection data for multiple species. – Meth. Ecol. Evol. 6: 424–438.
    • (2015) Meth. Ecol. Evol , vol.6 , pp. 424-438
    • Fithian, W.1
  • 34
    • 65949091175 scopus 로고    scopus 로고
    • Ice age distributions of European small mammals: insights from species distribution modelling
    • Fløjgaard, C. et al. 2009. Ice age distributions of European small mammals: insights from species distribution modelling. – J. Biogeogr. 36: 1152–1163.
    • (2009) J. Biogeogr , vol.36 , pp. 1152-1163
    • Fløjgaard, C.1
  • 35
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley, A. M. et al. 2012. Current methods and advances in forecasting of wind power generation. – Renew. Energ. 37: 1–8.
    • (2012) Renew. Energ , vol.37 , pp. 1-8
    • Foley, A.M.1
  • 37
    • 0024975994 scopus 로고
    • The phylogenetic regression
    • Grafen, A. 1989. The phylogenetic regression. – Phil. Trans. R. Soc. B 326: 119–157.
    • (1989) Phil. Trans. R. Soc. B , vol.326 , pp. 119-157
    • Grafen, A.1
  • 40
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins, D. M. 2004. The problem of overfitting. – J. Chem. Inf. Comp. Sci. 44: 1–12.
    • (2004) J. Chem. Inf. Comp. Sci , vol.44 , pp. 1-12
    • Hawkins, D.M.1
  • 41
    • 84857796019 scopus 로고    scopus 로고
    • Does the interpolation accuracy of species distribution models come at the expense of transferability?
    • Heikkinen, R. K. et al. 2012. Does the interpolation accuracy of species distribution models come at the expense of transferability? – Ecography 35: 276–288.
    • (2012) Ecography , vol.35 , pp. 276-288
    • Heikkinen, R.K.1
  • 42
    • 33645107416 scopus 로고    scopus 로고
    • Statistics for correlated data: phylogenies, space and time
    • Ives, A. R. and Zhu, J. 2006. Statistics for correlated data: phylogenies, space and time. – Ecol. Appl. 16: 20–32.
    • (2006) Ecol. Appl , vol.16 , pp. 20-32
    • Ives, A.R.1    Zhu, J.2
  • 43
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R. W. and Stone, L. A. 1969. Computer aided design of experiments. – Technometrics 11: 137–148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 44
    • 0033016226 scopus 로고    scopus 로고
    • Spatial autocorrelation of ecological phenomena
    • Koenig, W. D. 1999. Spatial autocorrelation of ecological phenomena. – Trends Ecol. Evol. 14: 22–26.
    • (1999) Trends Ecol. Evol , vol.14 , pp. 22-26
    • Koenig, W.D.1
  • 45
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • San Francisco
    • KohaviR. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. – 14th Int. Joint Conf. on Artifical Intelligence. Morgan Kaufmann Publ., San Francisco, CAUSA, pp. 1137–1143.
    • (1995) 14th Int. Joint Conf. on Artifical Intelligence. Morgan Kaufmann Publ. , pp. 1137-1143
    • Kohavi, R.1
  • 46
    • 65349137147 scopus 로고    scopus 로고
    • Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection
    • Koper, N. and Manseau, M. 2009. Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection. – J. Appl. Ecol. 46: 590–599.
    • (2009) J. Appl. Ecol , vol.46 , pp. 590-599
    • Koper, N.1    Manseau, M.2
  • 47
    • 33846039745 scopus 로고    scopus 로고
    • Incorporating spatial autocorrelation may invert observed patterns
    • Kuhn, I. 2007. Incorporating spatial autocorrelation may invert observed patterns. – Divers. Distrib. 13: 66–69.
    • (2007) Divers. Distrib , vol.13 , pp. 66-69
    • Kuhn, I.1
  • 49
    • 18844477738 scopus 로고
    • The problem of overfitting data
    • Larimore, W. E. and Mehra, R. K. 1985. The problem of overfitting data. – Byte 10: 167–178.
    • (1985) Byte , vol.10 , pp. 167-178
    • Larimore, W.E.1    Mehra, R.K.2
  • 50
    • 84902083123 scopus 로고    scopus 로고
    • Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation
    • Le Rest, K. et al. 2014. Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation. – Global Ecol. Biogeogr. 23: 811–820.
    • (2014) Global Ecol. Biogeogr , vol.23 , pp. 811-820
    • Le Rest, K.1
  • 51
    • 0031435517 scopus 로고    scopus 로고
    • Factors influencing behavior and transferability of habitat models for a benthic stream fish
    • Leftwich, K. N. et al. 1997. Factors influencing behavior and transferability of habitat models for a benthic stream fish. – Trans. Am. Fish. Soc. 126: 725–734.
    • (1997) Trans. Am. Fish. Soc , vol.126 , pp. 725-734
    • Leftwich, K.N.1
  • 52
    • 0027881344 scopus 로고
    • Spatial autocorrelation – trouble or new paradigm
    • Legendre, P. 1993. Spatial autocorrelation – trouble or new paradigm. – Ecology 74: 1659–1673.
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 53
    • 0024937968 scopus 로고
    • Spatial pattern and ecological analysis
    • Legendre, P. and Fortin, M. J. 1989. Spatial pattern and ecological analysis. – Vegetatio 80: 107–138.
    • (1989) Vegetatio , vol.80 , pp. 107-138
    • Legendre, P.1    Fortin, M.J.2
  • 54
    • 84886305622 scopus 로고    scopus 로고
    • Selection, use, choice and occupancy: clarifying concepts in resource selection studies
    • Lele, S. R. et al. 2013. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. – J. Anim. Ecol. 82: 1183–1191.
    • (2013) J. Anim. Ecol , vol.82 , pp. 1183-1191
    • Lele, S.R.1
  • 55
    • 79959614299 scopus 로고    scopus 로고
    • A robust test of spatial predictive models: geographic cross-validation
    • Lieske, D. J. and Bender, D. J. 2011. A robust test of spatial predictive models: geographic cross-validation. – J. Environ. Inf. 17: 91–101.
    • (2011) J. Environ. Inf , vol.17 , pp. 91-101
    • Lieske, D.J.1    Bender, D.J.2
  • 56
    • 0033784944 scopus 로고    scopus 로고
    • Population variability in space and time
    • Lundberg, P. et al. 2000. Population variability in space and time. – Trends Ecol. Evol. 15: 460–464.
    • (2000) Trends Ecol. Evol , vol.15 , pp. 460-464
    • Lundberg, P.1
  • 57
    • 0035658205 scopus 로고    scopus 로고
    • Towards a hierarchical framework for modelling the spatial distribution of animals
    • Mackey, B. G. and Lindenmayer, D. B. 2001. Towards a hierarchical framework for modelling the spatial distribution of animals. – J. Biogeogr. 28: 1147–1166.
    • (2001) J. Biogeogr , vol.28 , pp. 1147-1166
    • Mackey, B.G.1    Lindenmayer, D.B.2
  • 58
    • 84948994045 scopus 로고    scopus 로고
    • Modeling species and community responses to past, present, and future episodes of climatic and ecological change
    • Maguire, K. C. et al. 2015. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. – Annu. Rev. Ecol. Evol. Syst. 46: 343–368.
    • (2015) Annu. Rev. Ecol. Evol. Syst , vol.46 , pp. 343-368
    • Maguire, K.C.1
  • 59
    • 0002586248 scopus 로고
    • The importance of validation in ecosystem analysis
    • – In, G. (ed.),, Part I. The Society for Computer Simulation
    • Mankin, J. B. et al. 1977. The importance of validation in ecosystem analysis. – In: Innis, G. (ed.), New directions in the analysis of ecological systems. Part I. The Society for Computer Simulation, pp. 63–71.
    • (1977) New directions in the analysis of ecological systems , pp. Innis-71
    • Mankin, J.B.1
  • 61
    • 84908479347 scopus 로고    scopus 로고
    • Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models
    • Mesgaran, M. B. et al. 2014. Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. – Divers. Distrib. 20: 1147–1159.
    • (2014) Divers. Distrib , vol.20 , pp. 1147-1159
    • Mesgaran, M.B.1
  • 62
    • 33847632066 scopus 로고    scopus 로고
    • Incorporating spatial dependence in predictive vegetation models
    • Miller, J. et al. 2007. Incorporating spatial dependence in predictive vegetation models. – Ecol. Modell. 202: 225–242.
    • (2007) Ecol. Modell , vol.202 , pp. 225-242
    • Miller, J.1
  • 63
    • 85026689064 scopus 로고
    • Data analysis and regression a second course in statistics, Addison Wesley
    • MostellerF. and TukeyJ. W. 1977. Data analysis and regression: a second course in statistics. – Addison Wesley.
    • (1977)
    • Mosteller, F.1    Tukey, J.W.2
  • 64
    • 84926360683 scopus 로고    scopus 로고
    • Global effects of land use on local terrestrial biodiversity
    • Newbold, T. et al. 2015. Global effects of land use on local terrestrial biodiversity. – Nature 520: 45–50.
    • (2015) Nature , vol.520 , pp. 45-50
    • Newbold, T.1
  • 65
    • 0033196216 scopus 로고    scopus 로고
    • On the theory of forecast horizon in equity valuation
    • Ohlson, J. A. and Zhang, X. J. 1999. On the theory of forecast horizon in equity valuation. – J. Accounting Res. 37: 437–449.
    • (1999) J. Accounting Res , vol.37 , pp. 437-449
    • Ohlson, J.A.1    Zhang, X.J.2
  • 66
    • 0036221346 scopus 로고    scopus 로고
    • Predictive models of fish species distributions: a note on proper validation and chance predictions
    • Olden, J. D. et al. 2002. Predictive models of fish species distributions: a note on proper validation and chance predictions. – Trans. Am. Fish. Soc. 131: 329–336.
    • (2002) Trans. Am. Fish. Soc , vol.131 , pp. 329-336
    • Olden, J.D.1
  • 67
    • 0032789781 scopus 로고    scopus 로고
    • Autocorrelation of location estimates and the analysis of radiotracking data
    • Otis, D. L. and White, G. C. 1999. Autocorrelation of location estimates and the analysis of radiotracking data. – J. Wildl. Manage. 63: 1039–1044.
    • (1999) J. Wildl. Manage , vol.63 , pp. 1039-1044
    • Otis, D.L.1    White, G.C.2
  • 68
    • 33644642526 scopus 로고    scopus 로고
    • Climate change and the migration capacity of species
    • Pearson, R. G. 2006. Climate change and the migration capacity of species. – Trends Ecol. Evol. 21: 111–113.
    • (2006) Trends Ecol. Evol , vol.21 , pp. 111-113
    • Pearson, R.G.1
  • 69
    • 84931562756 scopus 로고    scopus 로고
    • The ecological forecast horizon, and examples of its uses and determinants
    • Petchey, O. L. et al. 2015. The ecological forecast horizon, and examples of its uses and determinants. – Ecol. Lett. 18: 597–611.
    • (2015) Ecol. Lett , vol.18 , pp. 597-611
    • Petchey, O.L.1
  • 70
    • 84950445313 scopus 로고
    • Cross-validation of regression-models
    • Picard, R. R. and Cook, R. D. 1984. Cross-validation of regression-models. – J. Am. Stat. Ass. 79: 575–583.
    • (1984) J. Am. Stat. Ass , vol.79 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 71
    • 0027844167 scopus 로고
    • The predictive validation of ecological and environmental-models
    • Power, M. 1993. The predictive validation of ecological and environmental-models. – Ecol. Modell. 68: 33–50.
    • (1993) Ecol. Modell , vol.68 , pp. 33-50
    • Power, M.1
  • 72
    • 0347948988 scopus 로고    scopus 로고
    • Consistent cross-validatory model-selection for dependent data: hv-block cross-validation
    • Racine, J. 2000. Consistent cross-validatory model-selection for dependent data: hv-block cross-validation. – J. Econometrics 99: 39–61.
    • (2000) J. Econometrics , vol.99 , pp. 39-61
    • Racine, J.1
  • 73
    • 84896142323 scopus 로고    scopus 로고
    • Making better MAXENT models of species distributions: complexity, overfitting and evaluation
    • Radosavljevic, A. and Anderson, R. P. 2014. Making better MAXENT models of species distributions: complexity, overfitting and evaluation. – J. Biogeogr. 41: 629–643.
    • (2014) J. Biogeogr , vol.41 , pp. 629-643
    • Radosavljevic, A.1    Anderson, R.P.2
  • 75
    • 78650722302 scopus 로고    scopus 로고
    • Phylogenetic signal and linear regression on species data
    • Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. – Meth. Ecol. Evol. 1: 319–329.
    • (2010) Meth. Ecol. Evol , vol.1 , pp. 319-329
    • Revell, L.J.1
  • 76
    • 84863436698 scopus 로고    scopus 로고
    • Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary?
    • Roberts, D. R. and Hamann, A. 2012a. Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary? – Ecography 35: 792–802.
    • (2012) Ecography , vol.35 , pp. 792-802
    • Roberts, D.R.1    Hamann, A.2
  • 77
    • 84855540491 scopus 로고    scopus 로고
    • Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective
    • Roberts, D. R. and Hamann, A. 2012b. Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. – Global Ecol. Biogeogr. 21: 121–133.
    • (2012) Global Ecol. Biogeogr , vol.21 , pp. 121-133
    • Roberts, D.R.1    Hamann, A.2
  • 79
    • 0031710911 scopus 로고    scopus 로고
    • Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects
    • Rooney, S. M. et al. 1998. Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. – Mamm. Rev. 28: 89–98.
    • (1998) Mamm. Rev , vol.28 , pp. 89-98
    • Rooney, S.M.1
  • 80
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H. et al. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. – J. R. Stat. Soc. B 71: 319–392.
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1
  • 81
    • 0030274304 scopus 로고    scopus 로고
    • Testing ecological models: the meaning of validation
    • Rykiel, E. J. 1996. Testing ecological models: the meaning of validation. – Ecol. Modell. 90: 229–244.
    • (1996) Ecol. Modell , vol.90 , pp. 229-244
    • Rykiel, E.J.1
  • 82
    • 84897109785 scopus 로고    scopus 로고
    • Climate change shifts environmental space and limits transferability of treeline models
    • Schibalski, A. et al. 2014. Climate change shifts environmental space and limits transferability of treeline models. – Ecography 37: 321–335.
    • (2014) Ecography , vol.37 , pp. 321-335
    • Schibalski, A.1
  • 83
    • 0034113180 scopus 로고    scopus 로고
    • Are habitat models transferable in space and time? – J. Nat
    • Schröder, B. and Richter, O. 2000. Are habitat models transferable in space and time? – J. Nat. Conserv. 8: 195–205.
    • (2000) Conserv , vol.8 , pp. 195-205
    • Schröder, B.1    Richter, O.2
  • 84
    • 21144474350 scopus 로고
    • Linear-model selection by cross-validation
    • Shao, J. 1993. Linear-model selection by cross-validation. – J. Am. Stat. Ass. 88: 486–494.
    • (1993) J. Am. Stat. Ass , vol.88 , pp. 486-494
    • Shao, J.1
  • 85
    • 84952126648 scopus 로고
    • Validation of regression-models – methods and examples
    • Snee, R. D. 1977. Validation of regression-models – methods and examples. – Technometrics 19: 415–428.
    • (1977) Technometrics , vol.19 , pp. 415-428
    • Snee, R.D.1
  • 86
    • 84963511184 scopus 로고    scopus 로고
    • Consistent response of bird populations to climate change on two continents
    • Stephens, P. A. et al. 2016. Consistent response of bird populations to climate change on two continents. – Science 352: 84–87.
    • (2016) Science , vol.352 , pp. 84-87
    • Stephens, P.A.1
  • 87
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. – J. R. Stat. Soc. B 36: 111–147.
    • (1974) J. R. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 88
    • 33645818057 scopus 로고    scopus 로고
    • The principles of collective animal behaviour
    • Sumpter, D. J. T. 2006. The principles of collective animal behaviour. – Phil. Trans. R. Soc. B 361: 5–22.
    • (2006) Phil. Trans. R. Soc. B , vol.361 , pp. 5-22
    • Sumpter, D.J.T.1
  • 89
    • 65549119335 scopus 로고    scopus 로고
    • Evaluation of transfer functions in spatially structured environments
    • Telford, R. J. and Birks, H. J. B. 2009. Evaluation of transfer functions in spatially structured environments. – Quat. Sci. Rev. 28: 1309–1316.
    • (2009) Quat. Sci. Rev , vol.28 , pp. 1309-1316
    • Telford, R.J.1    Birks, H.J.B.2
  • 90
    • 15944392491 scopus 로고    scopus 로고
    • Biases in the estimation of transfer function prediction errors
    • Telford, R. J. et al. 2004. Biases in the estimation of transfer function prediction errors. – Paleoceanography 19: PA4014.
    • (2004) Paleoceanography , vol.19 , pp. PA4014
    • Telford, R.J.1
  • 91
    • 0027882590 scopus 로고
    • Application and testing of a procedure to evaluate transferability of habitat suitability criteria
    • Thomas, J. A. and Bovee, K. D. 1993. Application and testing of a procedure to evaluate transferability of habitat suitability criteria. – River Res. Appl. 8: 285–294.
    • (1993) River Res. Appl , vol.8 , pp. 285-294
    • Thomas, J.A.1    Bovee, K.D.2
  • 92
    • 4744352914 scopus 로고    scopus 로고
    • Effects of restricting environmental range of data to project current and future species distributions
    • Thuiller, W. et al. 2004. Effects of restricting environmental range of data to project current and future species distributions. – Ecography 27: 165–172.
    • (2004) Ecography , vol.27 , pp. 165-172
    • Thuiller, W.1
  • 93
    • 84971304015 scopus 로고    scopus 로고
    • Technical note: estimating unbiased transfer-function performances in spatially structured environments
    • Trachsel, M. and Telford, R. J. 2016. Technical note: estimating unbiased transfer-function performances in spatially structured environments. – Climate Past 12: 1215–1223.
    • (2016) Climate Past , vol.12 , pp. 1215-1223
    • Trachsel, M.1    Telford, R.J.2
  • 94
    • 70449732203 scopus 로고    scopus 로고
    • Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models
    • Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. – J. Biogeogr. 36: 2290–2299.
    • (2009) J. Biogeogr , vol.36 , pp. 2290-2299
    • Veloz, S.D.1
  • 95
    • 0024764248 scopus 로고
    • Resampling methods for evaluating classification accuracy of wildlife habitat models
    • Verbyla, D. L. and Litvaitis, J. A. 1989. Resampling methods for evaluating classification accuracy of wildlife habitat models. – Environ. Manage. 13: 783–787.
    • (1989) Environ. Manage , vol.13 , pp. 783-787
    • Verbyla, D.L.1    Litvaitis, J.A.2
  • 96
    • 84867394789 scopus 로고    scopus 로고
    • Assessing transferability of ecological models: an underappreciated aspect of statistical validation
    • Wenger, S. J. and Olden, J. D. 2012. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. – Meth. Ecol. Evol. 3: 260–267.
    • (2012) Meth. Ecol. Evol , vol.3 , pp. 260-267
    • Wenger, S.J.1    Olden, J.D.2
  • 97
    • 39649110857 scopus 로고    scopus 로고
    • Three way k-fold cross-validation of resource selection functions
    • Wiens, T. S. et al. 2008. Three way k-fold cross-validation of resource selection functions. – Ecol. Modell. 212: 244–255.
    • (2008) Ecol. Modell , vol.212 , pp. 244-255
    • Wiens, T.S.1
  • 98
    • 35948950157 scopus 로고    scopus 로고
    • Novel climates, no-analog communities and ecological surprises
    • Williams, J. W. and Jackson, S. T. 2007. Novel climates, no-analog communities and ecological surprises. – Front. Ecol. Environ. 5: 475–482.
    • (2007) Front. Ecol. Environ , vol.5 , pp. 475-482
    • Williams, J.W.1    Jackson, S.T.2
  • 99
    • 0035659513 scopus 로고    scopus 로고
    • Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America
    • Williams, J. W. et al. 2001. Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. – Ecology 82: 3346–3362.
    • (2001) Ecology , vol.82 , pp. 3346-3362
    • Williams, J.W.1
  • 100
    • 0037099993 scopus 로고    scopus 로고
    • A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications
    • Wu, J. G. and David, J. L. 2002. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. – Ecol. Modell. 153: 7–26.
    • (2002) Ecol. Modell , vol.153 , pp. 7-26
    • Wu, J.G.1    David, J.L.2
  • 101
    • 84860606870 scopus 로고    scopus 로고
    • Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions
    • Zurell, D. et al. 2012. Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. – Divers. Distrib. 18: 628–634.
    • (2012) Divers. Distrib , vol.18 , pp. 628-634
    • Zurell, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.