메뉴 건너뛰기




Volumn 35, Issue 3, 2012, Pages 276-288

Does the interpolation accuracy of species distribution models come at the expense of transferability?

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY ASSESSMENT; ARTIFICIAL NEURAL NETWORK; BIRD; BUTTERFLY; CONSERVATION MANAGEMENT; ECOLOGICAL MODELING; LAND COVER; LINEARITY; PLANT; POPULATION DISTRIBUTION; POPULATION MODELING; REGRESSION ANALYSIS; SENSITIVITY ANALYSIS;

EID: 84857796019     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.1600-0587.2011.06999.x     Document Type: Article
Times cited : (217)

References (77)
  • 1
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
    • Allouche O. et al. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223-1232.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 1223-1232
    • Allouche, O.1
  • 2
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araújo M. B. and Guisan A. 2006. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33: 1677-1688.
    • (2006) J. Biogeogr. , vol.33 , pp. 1677-1688
    • Araújo, M.B.1    Guisan, A.2
  • 3
    • 33748497089 scopus 로고    scopus 로고
    • How does climate change affect biodiversity?
    • Araújo M. B. and Rahbek C. 2006. How does climate change affect biodiversity? Science 313: 1396-1397.
    • (2006) Science , vol.313 , pp. 1396-1397
    • Araújo, M.B.1    Rahbek, C.2
  • 4
    • 24344464067 scopus 로고    scopus 로고
    • Validation of species-climate impact models under climate change
    • Araújo M. B. et al. 2005. Validation of species-climate impact models under climate change. Global Change Biol. 11: 1504-1513.
    • (2005) Global Change Biol. , vol.11 , pp. 1504-1513
    • Araújo, M.B.1
  • 5
    • 33747039538 scopus 로고    scopus 로고
    • From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles
    • Arntzen J. 2006. From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles. Front. Zool. 8: 3.
    • (2006) Front. Zool. , vol.8 , pp. 3
    • Arntzen, J.1
  • 6
    • 33645961354 scopus 로고
    • Atlas of Finland. - National Board of Survey and Geographical Society of Finland.
    • Atlas of Finland 1988. Climate, Folio 131. - National Board of Survey and Geographical Society of Finland.
    • (1988) Climate, Folio 131
  • 7
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Modell. 200: 1-19.
    • (2007) Ecol. Modell. , vol.200 , pp. 1-19
    • Austin, M.1
  • 8
    • 33749998362 scopus 로고    scopus 로고
    • Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory
    • Austin M. et al. 2006. Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Modell. 199: 197-216.
    • (2006) Ecol. Modell. , vol.199 , pp. 197-216
    • Austin, M.1
  • 9
    • 0036883801 scopus 로고    scopus 로고
    • Species presence in fragmented landscapes: modelling of species requirements at the national level
    • Bailey S. A. et al. 2002. Species presence in fragmented landscapes: modelling of species requirements at the national level. Biol. Conserv. 108: 307-316.
    • (2002) Biol. Conserv. , vol.108 , pp. 307-316
    • Bailey, S.A.1
  • 10
    • 59149087959 scopus 로고    scopus 로고
    • Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain
    • Barbosa A. M. et al. 2009. Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecol. Modell. 220: 747-754.
    • (2009) Ecol. Modell. , vol.220 , pp. 747-754
    • Barbosa, A.M.1
  • 11
    • 33646557004 scopus 로고    scopus 로고
    • Error and uncertainty in habitat models
    • Barry S. C. and Elith J. 2006. Error and uncertainty in habitat models. J. Appl. Ecol. 43:413-423.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 413-423
    • Barry, S.C.1    Elith, J.2
  • 12
    • 64649104799 scopus 로고    scopus 로고
    • Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions
    • Beaumont L. J. et al. 2009. Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers. Distrib. 15: 409-420.
    • (2009) Divers. Distrib. , vol.15 , pp. 409-420
    • Beaumont, L.J.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Machine Lear. 45: 5-32.
    • (2001) Machine Lear. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 38449114584 scopus 로고    scopus 로고
    • Random forests for classification in ecology
    • Cutler D. R. et al. 2007. Random forests for classification in ecology. Ecology 88: 2783-2792.
    • (2007) Ecology , vol.88 , pp. 2783-2792
    • Cutler, D.R.1
  • 15
    • 33646552697 scopus 로고    scopus 로고
    • Modelling ecological niches with support vector machines
    • Drake J. M. et al. 2006. Modelling ecological niches with support vector machines. J. Appl. Ecol. 43: 424-432.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 424-432
    • Drake, J.M.1
  • 16
    • 66149191272 scopus 로고    scopus 로고
    • Do climate envelope models transfer? A manipulative test using dung beetle introductions
    • Duncan R. P. et al. 2009. Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc. R. Soc. B 276: 1449-1457.
    • (2009) Proc. R. Soc. B , vol.276 , pp. 1449-1457
    • Duncan, R.P.1
  • 17
    • 0012769183 scopus 로고    scopus 로고
    • Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia
    • Scott J. M. (eds), Island Press
    • Elith J. and Burgman M. 2002. Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. - In: Scott J. M. et al. (eds), Predicting species occurrences. Issues of accuracy and scale. Island Press, pp. 303-313.
    • (2002) Predicting species occurrences. Issues of accuracy and scale , pp. 303-313
    • Elith, J.1    Burgman, M.2
  • 18
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models
    • Elith J. and Graham C. H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 19
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith J. and Leathwick J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40: 677-697.
    • (2009) Annu. Rev. Ecol. Evol. Syst. , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 20
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 21
    • 84857795211 scopus 로고
    • ARC/INFO user's guide. Cell-based modelling with GRID. Analysis, display and management
    • ESRI.
    • ESRI 1991. ARC/INFO user's guide. Cell-based modelling with GRID. Analysis, display and management. Environ. Syst. Res. Inst.
    • (1991) Environ. Syst. Res. Inst.
  • 23
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding A. and Bell J. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 38-49.
    • (1997) Environ. Conserv. , vol.24 , pp. 38-49
    • Fielding, A.1    Bell, J.2
  • 24
    • 70350622719 scopus 로고    scopus 로고
    • The projection of species distribution models and the problem of non-analog climate
    • Fitzpatrick M. C. and Hargrove W. W. 2009. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 18: 2255-2261.
    • (2009) Biodivers. Conserv. , vol.18 , pp. 2255-2261
    • Fitzpatrick, M.C.1    Hargrove, W.W.2
  • 25
    • 57349083292 scopus 로고    scopus 로고
    • Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California
    • Franklin J. et al. 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Divers. Distrib. 15: 167-177.
    • (2009) Divers. Distrib. , vol.15 , pp. 167-177
    • Franklin, J.1
  • 26
    • 33746317317 scopus 로고    scopus 로고
    • Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula
    • Garzón M. B. et al. 2006. Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecol. Modell. 197: 383-393.
    • (2006) Ecol. Modell. , vol.197 , pp. 383-393
    • Garzón, M.B.1
  • 27
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan A. and Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.
    • (2005) Ecol. Lett. , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 28
    • 40349093056 scopus 로고    scopus 로고
    • What matters for predicting the occurrences of trees: techniques, data, or species' characteristics?
    • Guisan A. et al. 2007. What matters for predicting the occurrences of trees: techniques, data, or species' characteristics? Ecol. Monogr. 77: 615-630.
    • (2007) Ecol. Monogr. , vol.77 , pp. 615-630
    • Guisan, A.1
  • 29
    • 33748537148 scopus 로고    scopus 로고
    • Methods and uncertainties in bioclimatic envelope modelling under climate change
    • Heikkinen R. K. et al. 2006a. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progr. Phys. Geogr. 30: 751-777.
    • (2006) Progr. Phys. Geogr. , vol.30 , pp. 751-777
    • Heikkinen, R.K.1
  • 30
    • 33747428769 scopus 로고    scopus 로고
    • Does seasonal fine-tuning of climatic variables improve the performance of bioclimatic envelope models for migratory birds?
    • Heikkinen R. K. et al. 2006b. Does seasonal fine-tuning of climatic variables improve the performance of bioclimatic envelope models for migratory birds? Divers. Distrib. 12: 502-510.
    • (2006) Divers. Distrib. , vol.12 , pp. 502-510
    • Heikkinen, R.K.1
  • 31
    • 35348859799 scopus 로고    scopus 로고
    • Biotic interactions improve prediction of boreal bird distributions at macro-scales
    • Heikkinen R. K. et al. 2007. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecol. Biogeogr. 16: 754-763.
    • (2007) Global Ecol. Biogeogr. , vol.16 , pp. 754-763
    • Heikkinen, R.K.1
  • 32
    • 78751476893 scopus 로고    scopus 로고
    • Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe
    • Heikkinen R. K. et al. 2009. Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2: 1-32.
    • (2009) BioRisk , vol.2 , pp. 1-32
    • Heikkinen, R.K.1
  • 33
    • 54049102026 scopus 로고    scopus 로고
    • Not as good as they seem: the importance of concepts in species distribution modelling
    • Jimenez-Valverde A. et al. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14: 885-890.
    • (2008) Divers. Distrib. , vol.14 , pp. 885-890
    • Jimenez-Valverde, A.1
  • 34
    • 80255140289 scopus 로고    scopus 로고
    • Use of niche models in invasive species risk assessments
    • doi: 10.1007/s10530-011-9963-4
    • Jimenez-Valverde A. et al. 2011. Use of niche models in invasive species risk assessments. Biol. Invas. doi: 10.1007/s10530-011-9963-4.
    • (2011) Biol. Invas.
    • Jimenez-Valverde, A.1
  • 35
    • 55149124187 scopus 로고    scopus 로고
    • Threat spots and environmental determinants of red-listed plant, butterfly and bird species in boreal agricultural environments
    • Kivinen S. et al. 2008. Threat spots and environmental determinants of red-listed plant, butterfly and bird species in boreal agricultural environments. Biodivers. Conserv. 17: 3289-3305.
    • (2008) Biodivers. Conserv. , vol.17 , pp. 3289-3305
    • Kivinen, S.1
  • 36
    • 33745830853 scopus 로고    scopus 로고
    • Predicting climate-induced range shifts: model differences and model reliability
    • Lawler J. J. et al. 2006. Predicting climate-induced range shifts: model differences and model reliability. Global Change Biol. 12: 1-17.
    • (2006) Global Change Biol. , vol.12 , pp. 1-17
    • Lawler, J.J.1
  • 37
    • 33750002678 scopus 로고    scopus 로고
    • Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions
    • Leathwick J. R. et al. 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Modell. 199: 188-196.
    • (2006) Ecol. Modell. , vol.199 , pp. 188-196
    • Leathwick, J.R.1
  • 38
    • 20444488428 scopus 로고    scopus 로고
    • Selecting thresholds of occurrence in the prediction of species distributions
    • Liu C. et al. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393.
    • (2005) Ecography , vol.28 , pp. 385-393
    • Liu, C.1
  • 39
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17: 145-151.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 145-151
    • Lobo, J.M.1
  • 40
    • 77953929268 scopus 로고    scopus 로고
    • The uncertain nature of absences and their importance in species distribution modelling
    • Lobo J. M. et al. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33: 103-114.
    • (2010) Ecography , vol.33 , pp. 103-114
    • Lobo, J.M.1
  • 41
    • 33748545281 scopus 로고    scopus 로고
    • Determinants of biogeographical distribution of butterflies in boreal regions
    • Luoto M. et al. 2006. Determinants of biogeographical distribution of butterflies in boreal regions. J. Biogeogr. 33: 1764-1778.
    • (2006) J. Biogeogr. , vol.33 , pp. 1764-1778
    • Luoto, M.1
  • 42
    • 33845628163 scopus 로고    scopus 로고
    • The role of land cover in bioclimatic models depends on spatial resolution
    • Luoto M. et al. 2007. The role of land cover in bioclimatic models depends on spatial resolution. Global Ecol. Biogeogr. 16: 34-42.
    • (2007) Global Ecol. Biogeogr. , vol.16 , pp. 34-42
    • Luoto, M.1
  • 43
    • 70449518430 scopus 로고    scopus 로고
    • The performance of state-of-the-art modelling techniques depends on geographical distribution of species
    • Marmion M. et al. 2009. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol. Modell. 220: 3512-3520.
    • (2009) Ecol. Modell. , vol.220 , pp. 3512-3520
    • Marmion, M.1
  • 44
    • 67349159861 scopus 로고    scopus 로고
    • Combining scales in habitat models to improve conservation planning in an endangered vulture
    • Mateo-Tomas P. and Olea P. P. 2009. Combining scales in habitat models to improve conservation planning in an endangered vulture. Acta Oecol. 35: 489-498.
    • (2009) Acta Oecol. , vol.35 , pp. 489-498
    • Mateo-Tomas, P.1    Olea, P.P.2
  • 45
    • 77949361720 scopus 로고    scopus 로고
    • Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models
    • Newbold T. 2010. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progr. Phys. Geogr. 34: 3-22.
    • (2010) Progr. Phys. Geogr. , vol.34 , pp. 3-22
    • Newbold, T.1
  • 46
    • 49249102441 scopus 로고    scopus 로고
    • Machine learning methods without tears: a primer for ecologists
    • Olden J. D. et al. 2008. Machine learning methods without tears: a primer for ecologists. Q. Rev. Biol. 83: 171-193.
    • (2008) Q. Rev. Biol. , vol.83 , pp. 171-193
    • Olden, J.D.1
  • 47
    • 51849105069 scopus 로고    scopus 로고
    • Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives
    • Parviainen M. et al. 2008. Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. J. Biogeogr. 35: 1888-1905.
    • (2008) J. Biogeogr. , vol.35 , pp. 1888-1905
    • Parviainen, M.1
  • 48
    • 3042532648 scopus 로고    scopus 로고
    • Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data
    • Pearson R. G. et al. 2004. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27: 285-298.
    • (2004) Ecography , vol.27 , pp. 285-298
    • Pearson, R.G.1
  • 49
    • 33748501576 scopus 로고    scopus 로고
    • Model-based uncertainty in species' range prediction
    • Pearson R. G. et al. 2006. Model-based uncertainty in species' range prediction. J. Biogeogr. 33: 1704-1711.
    • (2006) J. Biogeogr. , vol.33 , pp. 1704-1711
    • Pearson, R.G.1
  • 50
    • 33845604583 scopus 로고    scopus 로고
    • Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar
    • Pearson R. G. et al. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102-117.
    • (2007) J. Biogeogr. , vol.34 , pp. 102-117
    • Pearson, R.G.1
  • 51
    • 34547923699 scopus 로고    scopus 로고
    • Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent
    • Peterson A. T. et al. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30: 550-560.
    • (2007) Ecography , vol.30 , pp. 550-560
    • Peterson, A.T.1
  • 52
    • 41449113364 scopus 로고    scopus 로고
    • Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson (2007)
    • Phillips S. J. 2008. Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31: 272-278.
    • (2008) Ecography , vol.31 , pp. 272-278
    • Phillips, S.J.1
  • 53
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231-259.
    • (2006) Ecol. Modell. , vol.190 , pp. 231-259
    • Phillips, S.J.1
  • 54
    • 42149088354 scopus 로고    scopus 로고
    • Species traits are associated with the quality of bioclimatic models
    • Pöyry J. et al. 2008. Species traits are associated with the quality of bioclimatic models. Global Ecol. Biogeogr. 17: 403-414.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 403-414
    • Pöyry, J.1
  • 55
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad A. M. et al. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9: 181-199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1
  • 56
    • 33646543813 scopus 로고    scopus 로고
    • Are niche-based species distribution models transferable in space?
    • Randin C. F. et al. 2006. Are niche-based species distribution models transferable in space? J. Biogeogr. 33: 1689-1703.
    • (2006) J. Biogeogr. , vol.33 , pp. 1689-1703
    • Randin, C.F.1
  • 57
    • 79953233105 scopus 로고    scopus 로고
    • Accounting for uncertainty when mapping species distributions: the need for maps of ignorance
    • Rocchini D. et al. 2011. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progr. Phys. Geogr. 35: 211-226.
    • (2011) Progr. Phys. Geogr. , vol.35 , pp. 211-226
    • Rocchini, D.1
  • 59
    • 0037860912 scopus 로고    scopus 로고
    • Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991-2000
    • Saarinen K. et al. 2002. Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991-2000. Biodivers. Conserv. 12: 2147-2159.
    • (2002) Biodivers. Conserv. , vol.12 , pp. 2147-2159
    • Saarinen, K.1
  • 60
    • 84857799871 scopus 로고    scopus 로고
    • Machine learning benchmarks and random forest regression. - Center for Bioinformatics and Molecular Biostatistics, UC San Francisco.
    • Segal M. R. 2004. Machine learning benchmarks and random forest regression. - Center for Bioinformatics and Molecular Biostatistics, UC San Francisco.
    • (2004)
    • Segal, M.R.1
  • 61
    • 0032903209 scopus 로고    scopus 로고
    • The GARP modelling system: problems and solutions to automated spatial prediction
    • Stockwell D. R. B. and Peters D. P. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inform. Syst. 13: 143-158.
    • (1999) Int. J. Geogr. Inform. Syst. , vol.13 , pp. 143-158
    • Stockwell, D.R.B.1    Peters, D.P.2
  • 62
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets K. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, K.1
  • 63
    • 72049101205 scopus 로고    scopus 로고
    • Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors
    • Syphard A. D. and Franklin J. 2009. Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography 32: 907-918.
    • (2009) Ecography , vol.32 , pp. 907-918
    • Syphard, A.D.1    Franklin, J.2
  • 64
    • 10944234906 scopus 로고    scopus 로고
    • Patterns and uncertainties of species' range shifts under climate change
    • Thuiller W. 2004. Patterns and uncertainties of species' range shifts under climate change. Global Change Biol. 10: 2020-2027.
    • (2004) Global Change Biol. , vol.10 , pp. 2020-2027
    • Thuiller, W.1
  • 65
    • 0242319036 scopus 로고    scopus 로고
    • Generalized models vs classification tree analysis: predicting spatial distributions of plant species at different scales
    • Thuiller W. et al. 2003. Generalized models vs classification tree analysis: predicting spatial distributions of plant species at different scales. J. Veg. Sci. 14: 669-680.
    • (2003) J. Veg. Sci. , vol.14 , pp. 669-680
    • Thuiller, W.1
  • 66
    • 4744352914 scopus 로고    scopus 로고
    • Effects of restricting environmental range of data to project current and future distributions
    • Thuiller W. et al. 2004. Effects of restricting environmental range of data to project current and future distributions. Ecography 27: 165-172.
    • (2004) Ecography , vol.27 , pp. 165-172
    • Thuiller, W.1
  • 67
    • 38849199261 scopus 로고    scopus 로고
    • Predicting global change impacts on plant species' distributions: future challenges
    • Thuiller W. et al. 2008. Predicting global change impacts on plant species' distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9: 137-152.
    • (2008) Perspect. Plant Ecol. Evol. Syst. , vol.9 , pp. 137-152
    • Thuiller, W.1
  • 68
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD - a platform for ensemble forecasting of species distributions
    • Thuiller W. et al. 2009. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32: 369-373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1
  • 69
    • 67650954352 scopus 로고    scopus 로고
    • Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe
    • Titeux N. et al. 2009. Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. J. Biogeogr. 36: 1459-1473.
    • (2009) J. Biogeogr. , vol.36 , pp. 1459-1473
    • Titeux, N.1
  • 70
    • 0021538127 scopus 로고
    • A circumboreal system of climatic-phytogeographical regions
    • Tuhkanen S. 1984. A circumboreal system of climatic-phytogeographical regions. Acta Bot. Fenn. 127: 1-50.
    • (1984) Acta Bot. Fenn. , vol.127 , pp. 1-50
    • Tuhkanen, S.1
  • 72
    • 33846979410 scopus 로고    scopus 로고
    • Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies
    • Vanreusel W. et al. 2007. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies. Conserv. Biol. 21: 201-212.
    • (2007) Conserv. Biol. , vol.21 , pp. 201-212
    • Vanreusel, W.1
  • 73
    • 0036431583 scopus 로고    scopus 로고
    • Meteorological data for agricultural applications
    • Venäläinen A. and Heikinheimo M. 2002. Meteorological data for agricultural applications. Phys. Chem. Earth 27: 1045-1050.
    • (2002) Phys. Chem. Earth , vol.27 , pp. 1045-1050
    • Venäläinen, A.1    Heikinheimo, M.2
  • 74
    • 33745290206 scopus 로고    scopus 로고
    • Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate
    • Virkkala R. et al. 2005. Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. J. Biogeogr. 32: 1957-1970.
    • (2005) J. Biogeogr. , vol.32 , pp. 1957-1970
    • Virkkala, R.1
  • 75
    • 73949100096 scopus 로고    scopus 로고
    • Niches, models, and climate change: assessing the assumptions and uncertainties
    • Wiens J. A. et al. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106: 19729-19736.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19729-19736
    • Wiens, J.A.1
  • 76
    • 34347233473 scopus 로고    scopus 로고
    • Projected distributions of novel and disappearing climates by 2100 AD
    • Williams J. W. et al. 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104: 5738-5742.
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 5738-5742
    • Williams, J.W.1
  • 77
    • 62949083890 scopus 로고    scopus 로고
    • The transferability of distribution models across regions: an amphibian case study
    • Zanini F. et al. 2009. The transferability of distribution models across regions: an amphibian case study. Divers. Distrib. 15: 469-480.
    • (2009) Divers. Distrib. , vol.15 , pp. 469-480
    • Zanini, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.