메뉴 건너뛰기




Volumn 13, Issue 2, 2017, Pages

Representing high throughput expression profiles via perturbation barcodes reveals compound targets

Author keywords

[No Author keywords available]

Indexed keywords

BAR CODES; CELL CULTURE; GENE EXPRESSION; STOCHASTIC SYSTEMS; THROUGHPUT;

EID: 85014286444     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1005335     Document Type: Article
Times cited : (23)

References (52)
  • 1
    • 33749335282 scopus 로고    scopus 로고
    • The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
    • Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science New York, NY. 2006;313(5795):1929–35.
    • (2006) Science (New York, NY , vol.313 , Issue.5795 , pp. 1929-1935
    • Lamb, J.1    Crawford, E.D.2    Peck, D.3    Modell, J.W.4    Blat, I.C.5    Wrobel, M.J.6
  • 3
    • 0035977845 scopus 로고    scopus 로고
    • Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity
    • 132319
    • Waring JF, Ciurlionis R, Jolly RA, Heindel M, Ulrich RG, Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett. 2001;120(1–3):359–68. 11323195
    • (2001) Toxicol Lett , vol.120 , Issue.1-3 , pp. 359-368
    • Waring, J.F.1    Ciurlionis, R.2    Jolly, R.A.3    Heindel, M.4    Ulrich, R.G.5
  • 4
    • 84926444288 scopus 로고    scopus 로고
    • Toxicity mechanisms identification via gene set enrichment analysis of time-series toxicogenomics data: impact of time and concentration
    • 578564
    • Gao C, Weisman D, Lan J, Gou N, Gu AZ, Toxicity mechanisms identification via gene set enrichment analysis of time-series toxicogenomics data: impact of time and concentration. Environ Sci Technol. 2015;49(7):4618–26. doi: 10.1021/es505199f25785649
    • (2015) Environ Sci Technol , vol.49 , Issue.7 , pp. 4618-4626
    • Gao, C.1    Weisman, D.2    Lan, J.3    Gou, N.4    Gu, A.Z.5
  • 6
    • 79959929769 scopus 로고    scopus 로고
    • How were new medicines discovered?
    • 170150
    • Swinney DC, Anthony J, How were new medicines discovered?Nature reviews. 2011;10(7):507–19. doi: 10.1038/nrd348021701501
    • (2011) Nature reviews , vol.10 , Issue.7 , pp. 507-519
    • Swinney, D.C.1    Anthony, J.2
  • 7
    • 84905495729 scopus 로고    scopus 로고
    • The discovery of first-in-class drugs: origins and evolution
    • 503373
    • Eder J, Sedrani R, Wiesmann C, The discovery of first-in-class drugs: origins and evolution. Nature reviews. 2014;13(8):577–87. doi: 10.1038/nrd433625033734
    • (2014) Nature reviews , vol.13 , Issue.8 , pp. 577-587
    • Eder, J.1    Sedrani, R.2    Wiesmann, C.3
  • 8
    • 84875458314 scopus 로고    scopus 로고
    • Target identification and mechanism of action in chemical biology and drug discovery
    • 350818
    • Schenone M, Dancik V, Wagner BK, Clemons PA, Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9(4):232–40. doi: 10.1038/nchembio.119923508189
    • (2013) Nat Chem Biol , vol.9 , Issue.4 , pp. 232-240
    • Schenone, M.1    Dancik, V.2    Wagner, B.K.3    Clemons, P.A.4
  • 9
    • 84939942187 scopus 로고    scopus 로고
    • Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project
    • 5582842,.. (): –
    • Verbist B, Klambauer G, Vervoort L, Talloen W, Shkedy Z, Thas O, et al. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project. Drug discovery today. 20(5):505–13. doi: 10.1016/j.drudis.2014.12.01425582842
    • Drug discovery today , vol.20 , Issue.5 , pp. 505-513
    • Verbist, B.1    Klambauer, G.2    Vervoort, L.3    Talloen, W.4    Shkedy, Z.5    Thas, O.6
  • 11
    • 84881033077 scopus 로고    scopus 로고
    • Robustness and compensation of information transmission of signaling pathways
    • Uda S, Saito TH, Kudo T, Kokaji T, Tsuchiya T, Kubota H, et al. Robustness and compensation of information transmission of signaling pathways. Science New York, NY. 2013;341(6145):558–61.
    • (2013) Science (New York, NY , vol.341 , Issue.6145 , pp. 558-561
    • Uda, S.1    Saito, T.H.2    Kudo, T.3    Kokaji, T.4    Tsuchiya, T.5    Kubota, H.6
  • 12
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, Brown PO, Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science New York, NY. 1995;270(5235):467–70.
    • (1995) Science (New York, NY , vol.270 , Issue.5235 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 13
    • 33747657739 scopus 로고    scopus 로고
    • A method for high-throughput gene expression signature analysis
    • 6859521,.; ():
    • Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J, A method for high-throughput gene expression signature analysis. Genome biology. 2006;7(7):R61. doi: 10.1186/gb-2006-7-7-r6116859521
    • (2006) Genome biology , vol.7 , Issue.7 , pp. R61
    • Peck, D.1    Crawford, E.D.2    Ross, K.N.3    Stegmaier, K.4    Golub, T.R.5    Lamb, J.6
  • 14
    • 84904811883 scopus 로고    scopus 로고
    • LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures
    • 490688
    • Duan Q, Flynn C, Niepel M, Hafner M, Muhlich JL, Fernandez NF, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic acids research. 2014;42(Web Server issue):W449–60. doi: 10.1093/nar/gku47624906883
    • (2014) Nucleic acids research , vol.42 , Issue.Web Server issue , pp. W449-W460
    • Duan, Q.1    Flynn, C.2    Niepel, M.3    Hafner, M.4    Muhlich, J.L.5    Fernandez, N.F.6
  • 15
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • 280845
    • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature genetics. 2003;34(3):267–73. doi: 10.1038/ng118012808457
    • (2003) Nature genetics , vol.34 , Issue.3 , pp. 267-273
    • Mootha, V.K.1    Lindgren, C.M.2    Eriksson, K.F.3    Subramanian, A.4    Sihag, S.5    Lehar, J.6
  • 18
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • p. –. Springe
    • Bengio Y, Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade: Springer; 2012. p. 437–78.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 19
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • 083840
    • Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9. doi: 10.1038/nrg282520838408
    • (2010) Nat Rev Genet , vol.11 , Issue.10 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3    Simcha, D.4    Langmead, B.5    Johnson, W.E.6
  • 21
    • 33748198771 scopus 로고    scopus 로고
    • Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles
    • 687346
    • Edelman E, Porrello A, Guinney J, Balakumaran B, Bild A, Febbo PG, et al. Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles. Bioinformatics. 2006;22(14):e108–16. doi: 10.1093/bioinformatics/btl23116873460
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. e108-e116
    • Edelman, E.1    Porrello, A.2    Guinney, J.3    Balakumaran, B.4    Bild, A.5    Febbo, P.G.6
  • 23
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine. 2012;29(6):82–97.
    • (2012) Signal Processing Magazine , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.-R.5    Jaitly, N.6
  • 26
    • 85014277455 scopus 로고    scopus 로고
    • iu C. Probabilistic Siamese Network for Learning Representations: University of Toronto; 2013
    • Liu C. Probabilistic Siamese Network for Learning Representations: University of Toronto; 2013.
  • 28
    • 85014233953 scopus 로고    scopus 로고
    • an Rijsbergen CJ. Information Retrieval. Dept. of Computer Science, University of Glasgow1979
    • Van Rijsbergen CJ. Information Retrieval. Dept. of Computer Science, University of Glasgow1979.
  • 29
    • 0036040277 scopus 로고    scopus 로고
    • Charikar MS, editor Similarity estimation techniques from rounding algorithms. Proceedings of the thiry-fourth annual ACM symposium on Theory of computing; 2002: ACM.
    • (2002)
    • Charikar, M.S.1
  • 31
    • 0342645323 scopus 로고    scopus 로고
    • Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection
    • Brown RD, Martin YC, Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. Journal of Chemical Information and Computer Sciences. 1996;36(3):572–84.
    • (1996) Journal of Chemical Information and Computer Sciences , vol.36 , Issue.3 , pp. 572-584
    • Brown, R.D.1    Martin, Y.C.2
  • 32
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • 067695
    • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/3500050110676951
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3    Ma, C.4    Lossos, I.S.5    Rosenwald, A.6
  • 33
    • 84859179256 scopus 로고    scopus 로고
    • Exploring activity cliffs in medicinal chemistry
    • 223625
    • Stumpfe D, Bajorath J, Exploring activity cliffs in medicinal chemistry. Journal of medicinal chemistry. 2012;55(7):2932–42. doi: 10.1021/jm201706b22236250
    • (2012) Journal of medicinal chemistry , vol.55 , Issue.7 , pp. 2932-2942
    • Stumpfe, D.1    Bajorath, J.2
  • 34
    • 40049099114 scopus 로고    scopus 로고
    • Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R
    • 802447
    • Langfelder P, Zhang B, Horvath S, Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008;24(5):719–20. doi: 10.1093/bioinformatics/btm56318024473
    • (2008) Bioinformatics , vol.24 , Issue.5 , pp. 719-720
    • Langfelder, P.1    Zhang, B.2    Horvath, S.3
  • 37
    • 84865227014 scopus 로고    scopus 로고
    • Rethinking molecular similarity: comparing compounds on the basis of biological activity
    • 259449
    • Petrone PM, Simms B, Nigsch F, Lounkine E, Kutchukian P, Cornett A, et al. Rethinking molecular similarity: comparing compounds on the basis of biological activity. ACS chemical biology. 2012;7(8):1399–409. doi: 10.1021/cb300102822594495
    • (2012) ACS chemical biology , vol.7 , Issue.8 , pp. 1399-1409
    • Petrone, P.M.1    Simms, B.2    Nigsch, F.3    Lounkine, E.4    Kutchukian, P.5    Cornett, A.6
  • 39
    • 84923365627 scopus 로고    scopus 로고
    • Compound signature detection on LINCS L1000 big data
    • Liu C, Su J, Yang F, Wei K, Ma J, Zhou X, Compound signature detection on LINCS L1000 big data. Molecualr BioSystems. 2015;11(3):714–22.
    • (2015) Molecualr BioSystems , vol.11 , Issue.3 , pp. 714-722
    • Liu, C.1    Su, J.2    Yang, F.3    Wei, K.4    Ma, J.5    Zhou, X.6
  • 44
    • 85014164334 scopus 로고    scopus 로고
    • astien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et al. Theano: new features and speed improvements. NIPS 2012 deep learning workshop2012
    • Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et al. Theano: new features and speed improvements. NIPS 2012 deep learning workshop2012.
  • 45
    • 85014268775 scopus 로고    scopus 로고
    • ieleman TH. rmsprop2012
    • Tieleman TH. rmsprop2012.
  • 49
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn M, Building predictive models in R using the caret package. Journal of Statistical Software. 2008;28(5):1–26.
    • (2008) Journal of Statistical Software , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 51
    • 85014208726 scopus 로고    scopus 로고
    • onaldson J. tsne: T-distributed Stochastic Neighbor Embedding for R (t-SNE). R package version 0.1–2 ed2012
    • Donaldson J. tsne: T-distributed Stochastic Neighbor Embedding for R (t-SNE). R package version 0.1–2 ed2012.
  • 52
    • 17844369895 scopus 로고    scopus 로고
    • Generalized fragment-substructure based property prediction method
    • 566712
    • Clark M, Generalized fragment-substructure based property prediction method. Journal of chemical information and modeling. 2005;45(1):30–8. doi: 10.1021/ci049744c15667126
    • (2005) Journal of chemical information and modeling , vol.45 , Issue.1 , pp. 30-38
    • Clark, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.