-
1
-
-
77953822549
-
Ensuring the safety of chemicals
-
Anastas, P., Teichman, K., and Hubal, E. C. (2010). Ensuring the safety of chemicals. J. Expo. Sci. Environ. Epidemiol. 20, 395-396. doi: 10.1038/jes.2010.28
-
(2010)
J. Expo. Sci. Environ. Epidemiol.
, vol.20
, pp. 395-396
-
-
Anastas, P.1
Teichman, K.2
Hubal, E.C.3
-
2
-
-
0036951483
-
The quantification and characterization of endocrine disruptor bisphenol-a leaching from epoxy resin
-
Bae, B., Jeong, J. H., and Lee, S. J. (2002). The quantification and characterization of endocrine disruptor bisphenol-a leaching from epoxy resin. Wat. Sci. Technol. 46, 381-387. Available online at: http://wst.iwaponline.com/content/46/11-12/381
-
(2002)
Wat. Sci. Technol
, vol.46
, pp. 381-387
-
-
Bae, B.1
Jeong, J.H.2
Lee, S.J.3
-
3
-
-
85063844959
-
Theano: New Features and Speed Improvements
-
Learning
-
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., et al. (2012). Theano: New Features and Speed Improvements. Symbolic Computation; Learning. Available online at: http://arxiv.org/abs/1211.5590
-
(2012)
Symbolic Computation
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
-
4
-
-
0003562364
-
Modern Multidimensional Scarles
-
New York, NY: Springer-Verlag
-
Borg, I., and Groenen, P. (1997). Modern Multidimensional Scarles. Springer Series in Statistics. New York, NY: Springer-Verlag.
-
(1997)
Springer Series in Statistics
-
-
Borg, I.1
Groenen, P.2
-
5
-
-
0035478854
-
Random forests
-
Breiman, L. E. O. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1010933404324
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.E.O.1
-
6
-
-
0031189914
-
Multitask learning
-
Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41-75. doi: 10.1023/A:1007379606734
-
(1997)
Mach. Learn.
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
7
-
-
79951805682
-
Endocrine disruptors: from endocrine to metabolic disruption
-
Casals-Casas, C., and Desvergne, B. (2011). Endocrine disruptors: from endocrine to metabolic disruption. Annu. Rev. Physiol. 73, 135-162. doi: 10.1146/annurev-physiol-012110-142200
-
(2011)
Annu. Rev. Physiol.
, vol.73
, pp. 135-162
-
-
Casals-Casas, C.1
Desvergne, B.2
-
9
-
-
31544483641
-
Classification ensembles for unbalanced class sizes in predictive toxicology
-
Chen, J. J., Tsai, C. A., Young, J. F., and Kodell, R. L. (2005). Classification ensembles for unbalanced class sizes in predictive toxicology. SAR QSAR Environ. Res. 16, 517-529. doi: 10.1080/10659360500468468
-
(2005)
SAR QSAR Environ. Res.
, vol.16
, pp. 517-529
-
-
Chen, J.J.1
Tsai, C.A.2
Young, J.F.3
Kodell, R.L.4
-
10
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., et al. (2012). "Large scale distributed deep networks," in Advances in Neural Information Processing Systems, 1223-1231. Available online at: http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
-
11
-
-
67449132400
-
Endocrine-disrupting chemicals: an endocrine society scientific statement
-
Diamanti-Kandarakis, E., Bourguignon, J.-P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M. R., et al. (2009). Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr. Rev. 30, 293-342. doi: 10.1210/er.2009-0002
-
(2009)
Endocr. Rev.
, vol.30
, pp. 293-342
-
-
Diamanti-Kandarakis, E.1
Bourguignon, J.-P.2
Giudice, L.C.3
Hauser, R.4
Prins, G.S.5
Soto, A.M.R.6
-
12
-
-
33845620001
-
The toxcast program for prioritizing toxicity testing of environmental chemicals
-
Dix, D. J., Houck, K. A., Martin, M. T., Richard, A. M., Woodrow Setzer, R., Kavlock, R. J., et al. (2007). The toxcast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 95, 5-12. doi: 10.1093/toxsci/kfl103
-
(2007)
Toxicol. Sci.
, vol.95
, pp. 5-12
-
-
Dix, D.J.1
Houck, K.A.2
Martin, M.T.3
Richard, A.M.4
Woodrow Setzer, R.5
Kavlock, R.J.6
-
13
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159. Available online at: http://dl.acm.org/citation.cfm?id=1953048.2021068
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
14
-
-
78049349961
-
Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research
-
Fourches, D., Muratov, E., and Tropsha, A. (2010). Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50, 1189-1204. doi: 10.1021/ci100176x
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1189-1204
-
-
Fourches, D.1
Muratov, E.2
Tropsha, A.3
-
15
-
-
0037937509
-
Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report
-
Han, W.-D., Mu, Y.-M., Lu, X.-C., Xu, Z.-M., Li, X.-J., Yu, L., et al. (2003). Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr. Relat. Cancer 10, 217-224. doi: 10.1677/erc.0.0100217
-
(2003)
Endocr. Relat. Cancer
, vol.10
, pp. 217-224
-
-
Han, W.-D.1
Mu, Y.-M.2
Lu, X.-C.3
Xu, Z.-M.4
Li, X.-J.5
Yu, L.6
-
16
-
-
4344645978
-
Can the pharmaceutical industry reduce attrition rates?
-
Kola, I., and Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711-715. doi: 10.1038/nrd1470
-
(2004)
Nat. Rev. Drug Discov.
, vol.3
, pp. 711-715
-
-
Kola, I.1
Landis, J.2
-
17
-
-
44249116058
-
Hierarchical QSAR technology based on the simplex representation of molecular structure
-
Kuz'min, V. E., Artemenko, A. G., and Muratov, E. N. (2008). Hierarchical QSAR technology based on the simplex representation of molecular structure. J. Comput. Aided Mol. Des. 22, 403-421. doi: 10.1007/s10822-008-9179-6
-
(2008)
J. Comput. Aided Mol. Des.
, vol.22
, pp. 403-421
-
-
Kuz'min, V.E.1
Artemenko, A.G.2
Muratov, E.N.3
-
18
-
-
84928125522
-
Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure
-
Liu, J., Mansouri, K., Judson, R. S., Martin, M. T., Hong, H., Chen, M., et al. (2015). Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem. Res. Toxicol. 28, 738-751. doi: 10.1021/tx500501h
-
(2015)
Chem. Res. Toxicol.
, vol.28
, pp. 738-751
-
-
Liu, J.1
Mansouri, K.2
Judson, R.S.3
Martin, M.T.4
Hong, H.5
Chen, M.6
-
19
-
-
84987943069
-
DeepTox: toxicity prediction using deep learning
-
Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2015). DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3:80. doi: 10.3389/fenvs.2015.00080
-
(2015)
Front. Environ. Sci.
, vol.3
, pp. 80
-
-
Mayr, A.1
Klambauer, G.2
Unterthiner, T.3
Hochreiter, S.4
-
20
-
-
0242300208
-
Effects of endocrine disrupting chemicals on distinct expression patterns of estrogen receptor, cytochrome P450 aromatase and p53 genes in oryzias latipes liver
-
Min, J., Lee, S.-K., and Bock Gu, M. (2003). Effects of endocrine disrupting chemicals on distinct expression patterns of estrogen receptor, cytochrome P450 aromatase and p53 genes in oryzias latipes liver. J. Biochem. Mol. Toxicol. 17, 272-227. doi: 10.1002/jbt.10089
-
(2003)
J. Biochem. Mol. Toxicol.
, vol.17
, pp. 227-272
-
-
Min, J.1
Lee, S.-K.2
Bock Gu, M.3
-
21
-
-
77954700753
-
Per Aspera Ad Astra: application of simplex QSAR approach in antiviral research
-
Muratov, E. N., Artemenko, A. G., Varlamova, E. V., Polischuk, P. G., Lozitsky, V. P., Fedchuk, A. S., et al. (2010). Per Aspera Ad Astra: application of simplex QSAR approach in antiviral research. Fut. Med. Chem. 2, 1205-1226. doi: 10.4155/fmc.10.194
-
(2010)
Fut. Med. Chem.
, vol.2
, pp. 1205-1226
-
-
Muratov, E.N.1
Artemenko, A.G.2
Varlamova, E.V.3
Polischuk, P.G.4
Lozitsky, V.P.5
Fedchuk, A.S.6
-
23
-
-
33747084103
-
High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening
-
O'Brien, P. J., Irwin, W., Diaz, D., Howard-Cofield, E., Krejsa, C. M., Slaughter, M. R., et al. (2006). High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 80, 580-604. doi: 10.1007/s00204-006-0091-3
-
(2006)
Arch. Toxicol.
, vol.80
, pp. 580-604
-
-
O'Brien, P.J.1
Irwin, W.2
Diaz, D.3
Howard-Cofield, E.4
Krejsa, C.M.5
Slaughter, M.R.6
-
24
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Networks 61, 85-117. doi: 10.1016/j.neunet.2014.09.003
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
25
-
-
77956964002
-
Best practices for QSAR model development, validation, and exploitation
-
Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 29, 476-488. doi: 10.1002/minf.201000061
-
(2010)
Mol. Inform.
, vol.29
, pp. 476-488
-
-
Tropsha, A.1
-
26
-
-
0038724207
-
The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
-
Tropsha, A., Gramatica, P., and Gombar, V. K. (2003). The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22, 69-77. doi: 10.1002/qsar.200390007
-
(2003)
QSAR Comb. Sci.
, vol.22
, pp. 69-77
-
-
Tropsha, A.1
Gramatica, P.2
Gombar, V.K.3
-
27
-
-
78449275390
-
Chembench: a cheminformatics workbench
-
Walker, T., Grulke, C. M., Pozefsky, D., and Tropsha, A. (2010). Chembench: a cheminformatics workbench. Bioinformatics 26, 3000-3001. doi: 10.1093/bioinformatics/btq556
-
(2010)
Bioinformatics
, vol.26
, pp. 3000-3001
-
-
Walker, T.1
Grulke, C.M.2
Pozefsky, D.3
Tropsha, A.4
-
28
-
-
84945557463
-
Deep learning for drug-induced liver injury
-
Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., and Lai, L. (2015). Deep learning for drug-induced liver injury. J. Chem. Inf. Model. 55, 2085-2093. doi: 10.1021/acs.jcim.5b00238
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
|