-
1
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Netw. 2 (1989), 359–366.
-
(1989)
Neural Netw.
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
3
-
-
0028420218
-
Learning and generalization characteristics of random vector functional-link net
-
Pao, Y.H., Park, G.H., Sobajic, D.J., Learning and generalization characteristics of random vector functional-link net. Neurocomputing 6 (1994), 163–180.
-
(1994)
Neurocomputing
, vol.6
, pp. 163-180
-
-
Pao, Y.H.1
Park, G.H.2
Sobajic, D.J.3
-
4
-
-
84908682236
-
Trends in extreme learning machines: a review
-
Huang, G., Huang, G.-B., Song, S., You, K., Trends in extreme learning machines: a review. Neural Netw. 61 (2015), 32–48.
-
(2015)
Neural Netw.
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.-B.2
Song, S.3
You, K.4
-
5
-
-
84865355028
-
Efficient digital implementation of extreme learning machines for classification
-
Decherchi, S., Gastaldo, P., Leoncini, A., Zunino, R., Efficient digital implementation of extreme learning machines for classification. IEEE Trans. Circ. Syst. II 50 (2012), 496–500.
-
(2012)
IEEE Trans. Circ. Syst. II
, vol.50
, pp. 496-500
-
-
Decherchi, S.1
Gastaldo, P.2
Leoncini, A.3
Zunino, R.4
-
6
-
-
84901917081
-
A tensor-based pattern-recognition framework for the interpretation of touch modality in artificial skin systems
-
Gastaldo, P., Pinna, L., Seminara, L., Valle, M., Zunino, R., A tensor-based pattern-recognition framework for the interpretation of touch modality in artificial skin systems. IEEE Sens. 14 (2014), 2216–2225.
-
(2014)
IEEE Sens.
, vol.14
, pp. 2216-2225
-
-
Gastaldo, P.1
Pinna, L.2
Seminara, L.3
Valle, M.4
Zunino, R.5
-
7
-
-
84924582748
-
Sentic patterns: dependency-based rules for concept-level sentiment analysis
-
Poria, S., Cambria, E., Winterstein, G., Huang, G.-B., Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl. Based Syst. 69 (2014), 45–63.
-
(2014)
Knowl. Based Syst.
, vol.69
, pp. 45-63
-
-
Poria, S.1
Cambria, E.2
Winterstein, G.3
Huang, G.-B.4
-
8
-
-
84896834052
-
Extreme learning machine for ranking: generalization analysis and applications
-
Chen, H., Peng, J., Zhou, Y., Li, L., Pan, Z., Extreme learning machine for ranking: generalization analysis and applications. Neural Netw. 53 (2014), 119–126.
-
(2014)
Neural Netw.
, vol.53
, pp. 119-126
-
-
Chen, H.1
Peng, J.2
Zhou, Y.3
Li, L.4
Pan, Z.5
-
9
-
-
84890844620
-
Long-term time series prediction using OP-ELM
-
Grigorievskiy, A., Miche, Y., Ventelä, A.-M., Séverin, E., Lendasse, A., Long-term time series prediction using OP-ELM. Neural Netw. 51 (2014), 50–56.
-
(2014)
Neural Netw.
, vol.51
, pp. 50-56
-
-
Grigorievskiy, A.1
Miche, Y.2
Ventelä, A.-M.3
Séverin, E.4
Lendasse, A.5
-
10
-
-
84969228568
-
An ELM-based model for affective analogical reasoning
-
Cambria, E., Gastaldo, P., Bisio, F., Zunino, R., An ELM-based model for affective analogical reasoning. Neurocomputing 149A (2015), 443–455.
-
(2015)
Neurocomputing
, vol.149A
, pp. 443-455
-
-
Cambria, E.1
Gastaldo, P.2
Bisio, F.3
Zunino, R.4
-
11
-
-
85027951802
-
Domain adaptation extreme learning machines for drift compensation in E-nose systems
-
1790-1780
-
Zhang, L., Zhang, D., Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas., 64(7), 2015 1790-1780.
-
(2015)
IEEE Trans. Instrum. Meas.
, vol.64
, Issue.7
-
-
Zhang, L.1
Zhang, D.2
-
12
-
-
84940062177
-
Inductive bias for semi-supervised extreme learning machine
-
Bisio, F., Decherchi, S., Gastaldo, P., Zunino, R., Inductive bias for semi-supervised extreme learning machine. Neurocomputing 174 (2016), 154–167.
-
(2016)
Neurocomputing
, vol.174
, pp. 154-167
-
-
Bisio, F.1
Decherchi, S.2
Gastaldo, P.3
Zunino, R.4
-
13
-
-
70350723650
-
A theory of learning with similarity functions
-
Balcan, M.F., Blum, A., Srebro, N., A theory of learning with similarity functions. Mach. Learn. 72 (2008), 89–112.
-
(2008)
Mach. Learn.
, vol.72
, pp. 89-112
-
-
Balcan, M.F.1
Blum, A.2
Srebro, N.3
-
14
-
-
84947976021
-
SIM-ELM: Connecting the ELM model with similarity-function learning
-
Gastaldo, P., Bisio, F., Decherchi, S., Zunino, R., SIM-ELM: Connecting the ELM model with similarity-function learning. Neural Netw. 74 (2016), 22–34.
-
(2016)
Neural Netw.
, vol.74
, pp. 22-34
-
-
Gastaldo, P.1
Bisio, F.2
Decherchi, S.3
Zunino, R.4
-
15
-
-
85035094107
-
-
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.
-
-
-
-
16
-
-
85035112944
-
-
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html.
-
-
-
-
17
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann, T., Schölkopf, B., Smola, A.J., Kernel methods in machine learning. Ann. Stat. 36 (2008), 1171–1220.
-
(2008)
Ann. Stat.
, vol.36
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
18
-
-
84919642556
-
Is extreme learning machine feasible? a theoretical assessment (Part I)
-
Liu, X., Lin, S., Fang, J., Xu, Z., Is extreme learning machine feasible? a theoretical assessment (Part I). IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 7–20.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, pp. 7-20
-
-
Liu, X.1
Lin, S.2
Fang, J.3
Xu, Z.4
-
19
-
-
84919660197
-
Is extreme learning machine feasible? a theoretical assessment (Part II)
-
Liu, X., Lin, S., Fang, J., Xu, Z., Is extreme learning machine feasible? a theoretical assessment (Part II). IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 21–34.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, pp. 21-34
-
-
Liu, X.1
Lin, S.2
Fang, J.3
Xu, Z.4
-
20
-
-
0003991806
-
Statistical Learning Theory
-
Wiley-Interscience Pub
-
Vapnik, V.N., Statistical Learning Theory. 1998, Wiley-Interscience Pub.
-
(1998)
-
-
Vapnik, V.N.1
-
21
-
-
84869887831
-
In-sample model selection for trimmed hinge loss support vector machine
-
Anguita, D., Ghio, A., Oneto, L., Ridella, S., In-sample model selection for trimmed hinge loss support vector machine. Neural Process. Lett. 36:3 (2012), 275–283.
-
(2012)
Neural Process. Lett.
, vol.36
, Issue.3
, pp. 275-283
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
22
-
-
84875879529
-
In-sample and out-of-sample model selection and error estimation for support vector machines
-
Anguita, D., Ghio, A., Oneto, L., Ridella, S., In-sample and out-of-sample model selection and error estimation for support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 23:9 (2012), 1390–1406.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.9
, pp. 1390-1406
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
|