메뉴 건너뛰기




Volumn 53, Issue , 2014, Pages 119-126

Extreme learning machine for ranking: Generalization analysis and applications

Author keywords

Coefficient regularization; Extreme learning machine; Generalization bound; Learning theory; Ranking

Indexed keywords

BENCHMARKING; KNOWLEDGE ACQUISITION; LEARNING TO RANK;

EID: 84896834052     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2014.01.015     Document Type: Article
Times cited : (53)

References (40)
  • 1
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: a new machine learning approach
    • Agarwal S., Dugar D., Sengupt S. Ranking chemical structures for drug discovery: a new machine learning approach. Journal of Chemical Information and Modeling 2010, 50(5):716-731.
    • (2010) Journal of Chemical Information and Modeling , vol.50 , Issue.5 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupt, S.3
  • 2
    • 61749092782 scopus 로고    scopus 로고
    • Generalization bounds for ranking algorithms via algorithmic stability
    • Agarwal S., Niyogi P. Generalization bounds for ranking algorithms via algorithmic stability. Journal of Machine Learning Research 2009, 10:441-474.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 441-474
    • Agarwal, S.1    Niyogi, P.2
  • 4
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • MIT Press, B. Schölkopf, J. Platt, T. Hoffman (Eds.)
    • Burges C., Ragno R., Le Q. Learning to rank with nonsmooth cost functions. Advances in neural information processing systems 19 2007, MIT Press. B. Schölkopf, J. Platt, T. Hoffman (Eds.).
    • (2007) Advances in neural information processing systems 19
    • Burges, C.1    Ragno, R.2    Le, Q.3
  • 5
    • 31844446958 scopus 로고    scopus 로고
    • Learning to rank using gradient descent
    • In Proc. 22th international conference on machine learning
    • Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., & Hamilton, N. et al. (2005). Learning to rank using gradient descent. In Proc. 22th international conference on machine learning.
    • (2005)
    • Burges, C.1    Shaked, T.2    Renshaw, E.3    Lazier, A.4    Deeds, M.5    Hamilton, N.6
  • 6
    • 84870252621 scopus 로고    scopus 로고
    • Image classification based on effective extreme learning machine
    • Cao F.L., Liu B., Park D.S. Image classification based on effective extreme learning machine. Neurocomputing 2013, 102:90-97.
    • (2013) Neurocomputing , vol.102 , pp. 90-97
    • Cao, F.L.1    Liu, B.2    Park, D.S.3
  • 7
    • 84866888281 scopus 로고    scopus 로고
    • The convergence rate of a regularized ranking algorithm
    • Chen H. The convergence rate of a regularized ranking algorithm. Journal of Approximation Theory 2012, 164(12):1513-1519.
    • (2012) Journal of Approximation Theory , vol.164 , Issue.12 , pp. 1513-1519
    • Chen, H.1
  • 8
    • 84877830325 scopus 로고    scopus 로고
    • Learning rates of coefficient-based regularized classifier for density level detection
    • Chen H., Pan Z.B., Li L.Q., Tang Y.Y. Learning rates of coefficient-based regularized classifier for density level detection. Neural Computation 2013, 25(4):1107-1121.
    • (2013) Neural Computation , vol.25 , Issue.4 , pp. 1107-1121
    • Chen, H.1    Pan, Z.B.2    Li, L.Q.3    Tang, Y.Y.4
  • 12
    • 84896815582 scopus 로고    scopus 로고
    • Magnitude-preserving ranking algorithms
    • In Proc. 24th international conference on machine learning
    • Cortes, C., Mohri, M., & Rastogi, A. (2007). Magnitude-preserving ranking algorithms. In Proc. 24th international conference on machine learning.
    • (2007)
    • Cortes, C.1    Mohri, M.2    Rastogi, A.3
  • 19
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G.B., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.B.1    Ding, X.2    Zhou, H.3
  • 22
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 23
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using click through data
    • In Proc. in eighth ACM SIGKDD int'l conf. knowledge discovery and data mining
    • Joachims, T. (2002). Optimizing search engines using click through data. In Proc. in eighth ACM SIGKDD int'l conf. knowledge discovery and data mining(pp. 133-142).
    • (2002) , pp. 133-142
    • Joachims, T.1
  • 25
    • 84896900237 scopus 로고    scopus 로고
    • Is extreme learning machine feasible?
    • A theoretical assessment. Preprint
    • Liu, X., Lin, S., & Xu, Z.B. (2013). Is extreme learning machine feasible? A theoretical assessment. Preprint.
    • (2013)
    • Liu, X.1    Lin, S.2    Xu, Z.B.3
  • 27
    • 70450239631 scopus 로고    scopus 로고
    • The P-norm push: a simple convex ranking algorithm that concentrates at the top of the list
    • Rudin C. The P-norm push: a simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research 2009, 10:2233-2271.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2233-2271
    • Rudin, C.1
  • 28
    • 6044244849 scopus 로고    scopus 로고
    • A comparison of methods for modeling quantitative structure-activity relationships
    • Sutherland J.J., O'Brien L.A., Weaver D.F. A comparison of methods for modeling quantitative structure-activity relationships. Journal of Medicinal Chemistry 2004, 22:5541-5554.
    • (2004) Journal of Medicinal Chemistry , vol.22 , pp. 5541-5554
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 32
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • Wang Y., Cao F.L., Yuan Y. A study on effectiveness of extreme learning machine. Neurocomputing 2011, 74(16):2483-2490.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2483-2490
    • Wang, Y.1    Cao, F.L.2    Yuan, Y.3
  • 34
    • 84865441265 scopus 로고    scopus 로고
    • Analysis of convergence performance of neural networks ranking algorithm
    • Zhang Y.Q., Cao F.L. Analysis of convergence performance of neural networks ranking algorithm. Neural Networks 2012, 34:65-71.
    • (2012) Neural Networks , vol.34 , pp. 65-71
    • Zhang, Y.Q.1    Cao, F.L.2
  • 36
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • Zhou D.X. The covering number in learning theory. Journal of Complexity 2002, 18:739-767.
    • (2002) Journal of Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 37
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • Zhou D.X. Capacity of reproducing kernel spaces in learning theory. IEEE Transaction on Information Theory 2003, 49(7):1743-1752.
    • (2003) IEEE Transaction on Information Theory , vol.49 , Issue.7 , pp. 1743-1752
    • Zhou, D.X.1
  • 38
    • 84896396771 scopus 로고    scopus 로고
    • Learning to rank with extreme learning machine
    • Zong W., Huang G.B. Learning to rank with extreme learning machine. Neural Processing Letters 2013, 10.1007/s11063-013-9295-8.
    • (2013) Neural Processing Letters
    • Zong, W.1    Huang, G.B.2
  • 39
    • 67349220691 scopus 로고    scopus 로고
    • The generalization performance of ERM algorithm with strongly mixing observations
    • Zou B., Li L.Q., Xu Z.B. The generalization performance of ERM algorithm with strongly mixing observations. Machine Learning 2009, 75:275-295.
    • (2009) Machine Learning , vol.75 , pp. 275-295
    • Zou, B.1    Li, L.Q.2    Xu, Z.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.