-
1
-
-
77952768125
-
Ranking chemical structures for drug discovery: a new machine learning approach
-
Agarwal S., Dugar D., Sengupt S. Ranking chemical structures for drug discovery: a new machine learning approach. Journal of Chemical Information and Modeling 2010, 50(5):716-731.
-
(2010)
Journal of Chemical Information and Modeling
, vol.50
, Issue.5
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupt, S.3
-
2
-
-
61749092782
-
Generalization bounds for ranking algorithms via algorithmic stability
-
Agarwal S., Niyogi P. Generalization bounds for ranking algorithms via algorithmic stability. Journal of Machine Learning Research 2009, 10:441-474.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 441-474
-
-
Agarwal, S.1
Niyogi, P.2
-
4
-
-
84864039510
-
Learning to rank with nonsmooth cost functions
-
MIT Press, B. Schölkopf, J. Platt, T. Hoffman (Eds.)
-
Burges C., Ragno R., Le Q. Learning to rank with nonsmooth cost functions. Advances in neural information processing systems 19 2007, MIT Press. B. Schölkopf, J. Platt, T. Hoffman (Eds.).
-
(2007)
Advances in neural information processing systems 19
-
-
Burges, C.1
Ragno, R.2
Le, Q.3
-
5
-
-
31844446958
-
Learning to rank using gradient descent
-
In Proc. 22th international conference on machine learning
-
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., & Hamilton, N. et al. (2005). Learning to rank using gradient descent. In Proc. 22th international conference on machine learning.
-
(2005)
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
-
6
-
-
84870252621
-
Image classification based on effective extreme learning machine
-
Cao F.L., Liu B., Park D.S. Image classification based on effective extreme learning machine. Neurocomputing 2013, 102:90-97.
-
(2013)
Neurocomputing
, vol.102
, pp. 90-97
-
-
Cao, F.L.1
Liu, B.2
Park, D.S.3
-
7
-
-
84866888281
-
The convergence rate of a regularized ranking algorithm
-
Chen H. The convergence rate of a regularized ranking algorithm. Journal of Approximation Theory 2012, 164(12):1513-1519.
-
(2012)
Journal of Approximation Theory
, vol.164
, Issue.12
, pp. 1513-1519
-
-
Chen, H.1
-
8
-
-
84877830325
-
Learning rates of coefficient-based regularized classifier for density level detection
-
Chen H., Pan Z.B., Li L.Q., Tang Y.Y. Learning rates of coefficient-based regularized classifier for density level detection. Neural Computation 2013, 25(4):1107-1121.
-
(2013)
Neural Computation
, vol.25
, Issue.4
, pp. 1107-1121
-
-
Chen, H.1
Pan, Z.B.2
Li, L.Q.3
Tang, Y.Y.4
-
9
-
-
84890428197
-
Error analysis of stachastic gradient descent ranking
-
Chen H., Tang Y., Li L.Q., Yuan Y., Li X., Tang Y.Y. Error analysis of stachastic gradient descent ranking. IEEE Transactions on Cybernetics 2013, 43(3):898-909.
-
(2013)
IEEE Transactions on Cybernetics
, vol.43
, Issue.3
, pp. 898-909
-
-
Chen, H.1
Tang, Y.2
Li, L.Q.3
Yuan, Y.4
Li, X.5
Tang, Y.Y.6
-
10
-
-
84879394399
-
Support vector machine soft margin classifiers: error analysis
-
Chen D.R., Wu Q., Ying Y., Zhou D.X. Support vector machine soft margin classifiers: error analysis. Journal of Machine Learning Research 2004, 5:1143-1175.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.X.4
-
12
-
-
84896815582
-
Magnitude-preserving ranking algorithms
-
In Proc. 24th international conference on machine learning
-
Cortes, C., Mohri, M., & Rastogi, A. (2007). Magnitude-preserving ranking algorithms. In Proc. 24th international conference on machine learning.
-
(2007)
-
-
Cortes, C.1
Mohri, M.2
Rastogi, A.3
-
16
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund Y., Iyer R., Schapire R.E., Singer Y. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 2003, 4:933-969.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
18
-
-
84875175032
-
Learning theory approach to minimum error entropy criterion
-
Hu T., Fan J., Wu Q., Zhou D.X. Learning theory approach to minimum error entropy criterion. Journal of Machine Learning Research 2013, 14:377-397.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 377-397
-
-
Hu, T.1
Fan, J.2
Wu, Q.3
Zhou, D.X.4
-
19
-
-
78649492473
-
Optimization method based extreme learning machine for classification
-
Huang G.B., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
-
(2010)
Neurocomputing
, vol.74
, pp. 155-163
-
-
Huang, G.B.1
Ding, X.2
Zhou, H.3
-
21
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G.B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2012, 42(2):513-529.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
22
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
23
-
-
0242456822
-
Optimizing search engines using click through data
-
In Proc. in eighth ACM SIGKDD int'l conf. knowledge discovery and data mining
-
Joachims, T. (2002). Optimizing search engines using click through data. In Proc. in eighth ACM SIGKDD int'l conf. knowledge discovery and data mining(pp. 133-142).
-
(2002)
, pp. 133-142
-
-
Joachims, T.1
-
25
-
-
84896900237
-
Is extreme learning machine feasible?
-
A theoretical assessment. Preprint
-
Liu, X., Lin, S., & Xu, Z.B. (2013). Is extreme learning machine feasible? A theoretical assessment. Preprint.
-
(2013)
-
-
Liu, X.1
Lin, S.2
Xu, Z.B.3
-
27
-
-
70450239631
-
The P-norm push: a simple convex ranking algorithm that concentrates at the top of the list
-
Rudin C. The P-norm push: a simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research 2009, 10:2233-2271.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
-
28
-
-
6044244849
-
A comparison of methods for modeling quantitative structure-activity relationships
-
Sutherland J.J., O'Brien L.A., Weaver D.F. A comparison of methods for modeling quantitative structure-activity relationships. Journal of Medicinal Chemistry 2004, 22:5541-5554.
-
(2004)
Journal of Medicinal Chemistry
, vol.22
, pp. 5541-5554
-
-
Sutherland, J.J.1
O'Brien, L.A.2
Weaver, D.F.3
-
29
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. Least squares support vector machines 2002, World Scientific, Singapore.
-
(2002)
Least squares support vector machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
32
-
-
80051669013
-
A study on effectiveness of extreme learning machine
-
Wang Y., Cao F.L., Yuan Y. A study on effectiveness of extreme learning machine. Neurocomputing 2011, 74(16):2483-2490.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2483-2490
-
-
Wang, Y.1
Cao, F.L.2
Yuan, Y.3
-
34
-
-
84865441265
-
Analysis of convergence performance of neural networks ranking algorithm
-
Zhang Y.Q., Cao F.L. Analysis of convergence performance of neural networks ranking algorithm. Neural Networks 2012, 34:65-71.
-
(2012)
Neural Networks
, vol.34
, pp. 65-71
-
-
Zhang, Y.Q.1
Cao, F.L.2
-
35
-
-
84867839878
-
Universal approximation of extreme learning machine with adaptive growth of hidden nodes
-
Zhang R., Lan Y., Huang G.B., Xu Z.B. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Transactions on Neural Networks and Learning Systems 2012, 23(2):365-371.
-
(2012)
IEEE Transactions on Neural Networks and Learning Systems
, vol.23
, Issue.2
, pp. 365-371
-
-
Zhang, R.1
Lan, Y.2
Huang, G.B.3
Xu, Z.B.4
-
36
-
-
0036748375
-
The covering number in learning theory
-
Zhou D.X. The covering number in learning theory. Journal of Complexity 2002, 18:739-767.
-
(2002)
Journal of Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
-
37
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
Zhou D.X. Capacity of reproducing kernel spaces in learning theory. IEEE Transaction on Information Theory 2003, 49(7):1743-1752.
-
(2003)
IEEE Transaction on Information Theory
, vol.49
, Issue.7
, pp. 1743-1752
-
-
Zhou, D.X.1
-
38
-
-
84896396771
-
Learning to rank with extreme learning machine
-
Zong W., Huang G.B. Learning to rank with extreme learning machine. Neural Processing Letters 2013, 10.1007/s11063-013-9295-8.
-
(2013)
Neural Processing Letters
-
-
Zong, W.1
Huang, G.B.2
-
39
-
-
67349220691
-
The generalization performance of ERM algorithm with strongly mixing observations
-
Zou B., Li L.Q., Xu Z.B. The generalization performance of ERM algorithm with strongly mixing observations. Machine Learning 2009, 75:275-295.
-
(2009)
Machine Learning
, vol.75
, pp. 275-295
-
-
Zou, B.1
Li, L.Q.2
Xu, Z.B.3
-
40
-
-
84894071719
-
Generalization performance of Fisher linear discriminant based on Markov sampling
-
Zou B., Li L.Q., Xu Z.B., Luo T., Tang Y.Y. Generalization performance of Fisher linear discriminant based on Markov sampling. IEEE Transactions on Neural Networks and Learning Systems 2013, 24(2):288-300.
-
(2013)
IEEE Transactions on Neural Networks and Learning Systems
, vol.24
, Issue.2
, pp. 288-300
-
-
Zou, B.1
Li, L.Q.2
Xu, Z.B.3
Luo, T.4
Tang, Y.Y.5
|