메뉴 건너뛰기




Volumn 64, Issue 7, 2015, Pages 1790-1801

Domain Adaptation Extreme Learning Machines for Drift Compensation in E-Nose Systems

Author keywords

Domain adaptation (DA); drift compensation; electronic nose (E nose); extreme learning machine (ELM); transfer learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATIONAL EFFICIENCY; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 85027951802     PISSN: 00189456     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIM.2014.2367775     Document Type: Article
Times cited : (302)

References (37)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Dec.
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 2
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Aug.
    • G. Feng, G.-B. Huang, Q. Lin, and R. Gay, "Error minimized extreme learning machine with growth of hidden nodes and incremental learning,"IEEE Trans. Neural Netw., vol. 20, no. 8, pp. 1352-1357, Aug. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 3
  • 4
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul.
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 5
    • 22844440904 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine
    • Oct.
    • Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, "Evolutionary extreme learning machine," Pattern Recognit., vol. 38, no. 10, pp. 1759-1763, Oct. 2005.
    • (2005) Pattern Recognit. , vol.38 , Issue.10 , pp. 1759-1763
    • Zhu, Q.-Y.1    Qin, A.K.2    Suganthan, P.N.3    Huang, G.-B.4
  • 6
    • 84868626655 scopus 로고    scopus 로고
    • Weighted extreme learning machine for imbalance learning
    • Feb.
    • W. Zong, G.-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning," Neurocomputing, vol. 101, pp. 229-242, Feb. 2013.
    • (2013) Neurocomputing , vol.101 , pp. 229-242
    • Zong, W.1    Huang, G.-B.2    Chen, Y.3
  • 7
    • 84907219786 scopus 로고    scopus 로고
    • Sparse extreme learning machine for classification
    • Oct.
    • Z. Bai, G.-B. Huang, D. Wang, H. Wang, and M. B. Westover, "Sparse extreme learning machine for classification," IEEE Trans. Cybern., vol. 44, no. 10, pp. 1858-1870, Oct. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.10 , pp. 1858-1870
    • Bai, Z.1    Huang, G.-B.2    Wang, D.3    Wang, H.4    Westover, M.B.5
  • 8
    • 84893663643 scopus 로고    scopus 로고
    • Fast sparse approximation of extreme learning machine
    • Mar.
    • X. Li, W. Mao, and W. Jiang, "Fast sparse approximation of extreme learning machine," Neurocomputing, vol. 128, pp. 96-103, Mar. 2014.
    • (2014) Neurocomputing , vol.128 , pp. 96-103
    • Li, X.1    Mao, W.2    Jiang, W.3
  • 9
    • 84911944987 scopus 로고    scopus 로고
    • Semi-supervised and unsupervised extreme learning machines
    • G. Huang, S. Song, J. N. D. Gupta, and C. Wu, "Semi-supervised and unsupervised extreme learning machines," IEEE Trans. Cybern., 2014, doi: 10.1109/TCYB.2014.2307349.
    • (2014) IEEE Trans. Cybern.
    • Huang, G.1    Song, S.2    Gupta, J.N.D.3    Wu, C.4
  • 12
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Feb.
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 14
    • 84862192949 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources: A domain-dependent regularization approach
    • Mar.
    • L. Duan, D. Xu, and I. W. Tsang, "Domain adaptation from multiple sources: A domain-dependent regularization approach," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 504-518, Mar. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.3 , pp. 504-518
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 15
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach," in Proc. IEEE ICCV, Nov. 2011, pp. 999-1006.
    • Proc. IEEE ICCV, Nov. 2011 , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 16
    • 84892391727 scopus 로고    scopus 로고
    • Drift compensation for electronic nose by semi-supervised domain adaption
    • Mar.
    • Q. Liu, X. Li, M. Ye, S. S. Ge, and X. Du, "Drift compensation for electronic nose by semi-supervised domain adaption," IEEE Sensors J., vol. 14, no. 3, pp. 657-665, Mar. 2014.
    • (2014) IEEE Sensors J. , vol.14 , Issue.3 , pp. 657-665
    • Liu, Q.1    Li, X.2    Ye, M.3    Ge, S.S.4    Du, X.5
  • 17
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Nov.
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples,"J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 18
    • 84894426130 scopus 로고    scopus 로고
    • A new kernel discriminant analysis framework for electronic nose recognition
    • Mar.
    • L. Zhang and F.-C. Tian, "A new kernel discriminant analysis framework for electronic nose recognition," Anal. Chim. Acta, vol. 816, pp. 8-17, Mar. 2014.
    • (2014) Anal. Chim. Acta , vol.816 , pp. 8-17
    • Zhang, L.1    Tian, F.-C.2
  • 19
    • 84868140991 scopus 로고    scopus 로고
    • Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine
    • Nov.
    • L. Zhang et al., "Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine," Sens. Actuators B, Chem., vol. 174, pp. 114-125, Nov. 2012.
    • (2012) Sens. Actuators B, Chem. , vol.174 , pp. 114-125
    • Zhang, L.1
  • 20
    • 84861201240 scopus 로고    scopus 로고
    • Recognition of coffee using differential electronic nose
    • Jun.
    • K. Brudzewski, S. Osowski, and A. Dwulit, "Recognition of coffee using differential electronic nose," IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1803-1810, Jun. 2012.
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.6 , pp. 1803-1810
    • Brudzewski, K.1    Osowski, S.2    Dwulit, A.3
  • 21
    • 69249242818 scopus 로고    scopus 로고
    • Towards versatile electronic nose pattern classifier for black tea quality evaluation: An incremental fuzzy approach
    • Sep.
    • B. Tudu et al., "Towards versatile electronic nose pattern classifier for black tea quality evaluation: An incremental fuzzy approach," IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3069-3078, Sep. 2009.
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , Issue.9 , pp. 3069-3078
    • Tudu, B.1
  • 22
    • 0034324339 scopus 로고    scopus 로고
    • An electronic nose system to diagnose illness
    • Nov.
    • J. W. Gardner, H. W. Shin, and E. L. Hines, "An electronic nose system to diagnose illness," Sens. Actuators B, Chem., vol. 70, nos. 1-3, pp. 19-24, Nov. 2000.
    • (2000) Sens. Actuators B, Chem. , vol.70 , Issue.1-3 , pp. 19-24
    • Gardner, J.W.1    Shin, H.W.2    Hines, E.L.3
  • 23
    • 81155139685 scopus 로고    scopus 로고
    • Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose
    • Dec.
    • L. Zhang, F. Tian, C. Kadri, G. Pei, H. Li, and L. Pan, "Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose," Sens. Actuators B, Chem., vol. 160, no. 1, pp. 760-770, Dec. 2011.
    • (2011) Sens. Actuators B, Chem. , vol.160 , Issue.1 , pp. 760-770
    • Zhang, L.1    Tian, F.2    Kadri, C.3    Pei, G.4    Li, H.5    Pan, L.6
  • 24
    • 84902366093 scopus 로고    scopus 로고
    • Performance study of multilayer perceptrons in a low-cost electronic nose
    • Jul.
    • L. Zhang and F. Tian, "Performance study of multilayer perceptrons in a low-cost electronic nose," IEEE Trans. Instrum. Meas., vol. 63, no. 7, pp. 1670-1679, Jul. 2014.
    • (2014) IEEE Trans. Instrum. Meas. , vol.63 , Issue.7 , pp. 1670-1679
    • Zhang, L.1    Tian, F.2
  • 25
    • 84864978664 scopus 로고    scopus 로고
    • Drift correction methods for gas chemical sensors in artificial olfaction systems: Techniques and challenges
    • Jan.
    • S. D. Carlo and M. Falasconi, "Drift correction methods for gas chemical sensors in artificial olfaction systems: Techniques and challenges," Adv. Chem. Sensors, pp. 305-326, Jan. 2012.
    • (2012) Adv. Chem. Sensors , pp. 305-326
    • Carlo, S.D.1    Falasconi, M.2
  • 27
    • 77951105742 scopus 로고    scopus 로고
    • Long term stability of metal oxide-based gas sensors for E-nose environmental applications: An overview
    • A. C. Romain and J. Nicolas, "Long term stability of metal oxide-based gas sensors for E-nose environmental applications: An overview,"Sens. Actuators B, Chem., vol. 146, no. 2, pp. 502-506, 2010.
    • (2010) Sens. Actuators B, Chem. , vol.146 , Issue.2 , pp. 502-506
    • Romain, A.C.1    Nicolas, J.2
  • 28
    • 84875692341 scopus 로고    scopus 로고
    • Chaotic time series prediction of E-nose sensor drift in embedded phase space
    • Jun.
    • L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, and X. Yin, "Chaotic time series prediction of E-nose sensor drift in embedded phase space,"Sens. Actuators B, Chem., vol. 182, pp. 71-79, Jun. 2013.
    • (2013) Sens. Actuators B, Chem. , vol.182 , pp. 71-79
    • Zhang, L.1    Tian, F.2    Liu, S.3    Dang, L.4    Peng, X.5    Yin, X.6
  • 29
    • 84927724861 scopus 로고    scopus 로고
    • ELM-based ensemble classifier for gas sensor array drift dataset, computational intelligence, cyber security and computational models
    • Jan.
    • D. A. P. Daniel, K. Thangavel, R. Manavalan, and R. S. C. Boss, "ELM-based ensemble classifier for gas sensor array drift dataset, computational intelligence, cyber security and computational models,"Adv. Intell. Syst. Comput., vol. 246, pp. 89-96, Jan. 2014.
    • (2014) Adv. Intell. Syst. Comput. , vol.246 , pp. 89-96
    • Daniel, D.A.P.1    Thangavel, K.2    Manavalan, R.3    Boss, R.S.C.4
  • 30
    • 84888025144 scopus 로고    scopus 로고
    • On the calibration of sensor arrays for pattern recognition using the minimal number of experiments
    • Jan.
    • I. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer, and R. Huerta, "On the calibration of sensor arrays for pattern recognition using the minimal number of experiments," Chemometrics Intell. Lab. Syst., vol. 130, pp. 123-134, Jan. 2014.
    • (2014) Chemometrics Intell. Lab. Syst. , vol.130 , pp. 123-134
    • Rodriguez-Lujan, I.1    Fonollosa, J.2    Vergara, A.3    Homer, M.4    Huerta, R.5
  • 31
    • 85028217737 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
  • 33
    • 0038759361 scopus 로고    scopus 로고
    • Pattern analysis for machine olfaction: A review
    • Jun.
    • R. Gutierrez-Osuna, "Pattern analysis for machine olfaction: A review,"IEEE Sensors J., vol. 2, no. 3, pp. 189-202, Jun. 2002.
    • (2002) IEEE Sensors J. , vol.2 , Issue.3 , pp. 189-202
    • Gutierrez-Osuna, R.1
  • 36
    • 79960210487 scopus 로고    scopus 로고
    • Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation
    • Oct.
    • S. D. Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, and A. Tonda, "Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation," Pattern Recognit. Lett., vol. 32, no. 13, pp. 1594-1603, Oct. 2011.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.13 , pp. 1594-1603
    • Carlo, S.D.1    Falasconi, M.2    Sanchez, E.3    Scionti, A.4    Squillero, G.5    Tonda, A.6
  • 37
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman, "Geodesic flow kernel for unsupervised domain adaptation," in Proc. CVPR, 2012, pp. 2066-2073.
    • Proc. CVPR, 2012 , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.