-
1
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
Dec.
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, Dec. 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
2
-
-
68949200808
-
Error minimized extreme learning machine with growth of hidden nodes and incremental learning
-
Aug.
-
G. Feng, G.-B. Huang, Q. Lin, and R. Gay, "Error minimized extreme learning machine with growth of hidden nodes and incremental learning,"IEEE Trans. Neural Netw., vol. 20, no. 8, pp. 1352-1357, Aug. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.8
, pp. 1352-1357
-
-
Feng, G.1
Huang, G.-B.2
Lin, Q.3
Gay, R.4
-
3
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Apr.
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
-
(2012)
IEEE IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
4
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Jul.
-
G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
5
-
-
22844440904
-
Evolutionary extreme learning machine
-
Oct.
-
Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, "Evolutionary extreme learning machine," Pattern Recognit., vol. 38, no. 10, pp. 1759-1763, Oct. 2005.
-
(2005)
Pattern Recognit.
, vol.38
, Issue.10
, pp. 1759-1763
-
-
Zhu, Q.-Y.1
Qin, A.K.2
Suganthan, P.N.3
Huang, G.-B.4
-
6
-
-
84868626655
-
Weighted extreme learning machine for imbalance learning
-
Feb.
-
W. Zong, G.-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning," Neurocomputing, vol. 101, pp. 229-242, Feb. 2013.
-
(2013)
Neurocomputing
, vol.101
, pp. 229-242
-
-
Zong, W.1
Huang, G.-B.2
Chen, Y.3
-
7
-
-
84907219786
-
Sparse extreme learning machine for classification
-
Oct.
-
Z. Bai, G.-B. Huang, D. Wang, H. Wang, and M. B. Westover, "Sparse extreme learning machine for classification," IEEE Trans. Cybern., vol. 44, no. 10, pp. 1858-1870, Oct. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.10
, pp. 1858-1870
-
-
Bai, Z.1
Huang, G.-B.2
Wang, D.3
Wang, H.4
Westover, M.B.5
-
8
-
-
84893663643
-
Fast sparse approximation of extreme learning machine
-
Mar.
-
X. Li, W. Mao, and W. Jiang, "Fast sparse approximation of extreme learning machine," Neurocomputing, vol. 128, pp. 96-103, Mar. 2014.
-
(2014)
Neurocomputing
, vol.128
, pp. 96-103
-
-
Li, X.1
Mao, W.2
Jiang, W.3
-
9
-
-
84911944987
-
Semi-supervised and unsupervised extreme learning machines
-
G. Huang, S. Song, J. N. D. Gupta, and C. Wu, "Semi-supervised and unsupervised extreme learning machines," IEEE Trans. Cybern., 2014, doi: 10.1109/TCYB.2014.2307349.
-
(2014)
IEEE Trans. Cybern.
-
-
Huang, G.1
Song, S.2
Gupta, J.N.D.3
Wu, C.4
-
10
-
-
80053342456
-
Domain adaptation with structural correspondence learning
-
J. Blitzer, R. McDonald, and F. Pereira, "Domain adaptation with structural correspondence learning," in Proc. Conf. Empirical Methods Natural Lang. Process., Jul. 2006, pp. 120-128.
-
Proc. Conf. Empirical Methods Natural Lang. Process., Jul. 2006
, pp. 120-128
-
-
Blitzer, J.1
McDonald, R.2
Pereira, F.3
-
11
-
-
37849026107
-
Cross-domain video concept detection using adaptive SVMs
-
J. Yang, R. Yan, and A. G. Hauptmann, "Cross-domain video concept detection using adaptive SVMs," in Proc. Int. Conf. Multimedia, Sep. 2007, pp. 188-197.
-
Proc. Int. Conf. Multimedia, Sep. 2007
, pp. 188-197
-
-
Yang, J.1
Yan, R.2
Hauptmann, A.G.3
-
12
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
Feb.
-
S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.2
, pp. 199-210
-
-
Pan, S.J.1
Tsang, I.W.2
Kwok, J.T.3
Yang, Q.4
-
13
-
-
70049084596
-
Domain adaptation from multiple sources via auxiliary classifiers
-
L. Duan, I. W. Tsang, D. Xu, and T.-S. Chua, "Domain adaptation from multiple sources via auxiliary classifiers," in Proc. Int. Conf. Mach. Learn., Jun. 2009, pp. 289-296.
-
Proc. Int. Conf. Mach. Learn., Jun. 2009
, pp. 289-296
-
-
Duan, L.1
Tsang, I.W.2
Xu, D.3
Chua, T.-S.4
-
14
-
-
84862192949
-
Domain adaptation from multiple sources: A domain-dependent regularization approach
-
Mar.
-
L. Duan, D. Xu, and I. W. Tsang, "Domain adaptation from multiple sources: A domain-dependent regularization approach," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 504-518, Mar. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.3
, pp. 504-518
-
-
Duan, L.1
Xu, D.2
Tsang, I.W.3
-
15
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach," in Proc. IEEE ICCV, Nov. 2011, pp. 999-1006.
-
Proc. IEEE ICCV, Nov. 2011
, pp. 999-1006
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
16
-
-
84892391727
-
Drift compensation for electronic nose by semi-supervised domain adaption
-
Mar.
-
Q. Liu, X. Li, M. Ye, S. S. Ge, and X. Du, "Drift compensation for electronic nose by semi-supervised domain adaption," IEEE Sensors J., vol. 14, no. 3, pp. 657-665, Mar. 2014.
-
(2014)
IEEE Sensors J.
, vol.14
, Issue.3
, pp. 657-665
-
-
Liu, Q.1
Li, X.2
Ye, M.3
Ge, S.S.4
Du, X.5
-
17
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Nov.
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples,"J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
18
-
-
84894426130
-
A new kernel discriminant analysis framework for electronic nose recognition
-
Mar.
-
L. Zhang and F.-C. Tian, "A new kernel discriminant analysis framework for electronic nose recognition," Anal. Chim. Acta, vol. 816, pp. 8-17, Mar. 2014.
-
(2014)
Anal. Chim. Acta
, vol.816
, pp. 8-17
-
-
Zhang, L.1
Tian, F.-C.2
-
19
-
-
84868140991
-
Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine
-
Nov.
-
L. Zhang et al., "Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine," Sens. Actuators B, Chem., vol. 174, pp. 114-125, Nov. 2012.
-
(2012)
Sens. Actuators B, Chem.
, vol.174
, pp. 114-125
-
-
Zhang, L.1
-
20
-
-
84861201240
-
Recognition of coffee using differential electronic nose
-
Jun.
-
K. Brudzewski, S. Osowski, and A. Dwulit, "Recognition of coffee using differential electronic nose," IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1803-1810, Jun. 2012.
-
(2012)
IEEE Trans. Instrum. Meas.
, vol.61
, Issue.6
, pp. 1803-1810
-
-
Brudzewski, K.1
Osowski, S.2
Dwulit, A.3
-
21
-
-
69249242818
-
Towards versatile electronic nose pattern classifier for black tea quality evaluation: An incremental fuzzy approach
-
Sep.
-
B. Tudu et al., "Towards versatile electronic nose pattern classifier for black tea quality evaluation: An incremental fuzzy approach," IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3069-3078, Sep. 2009.
-
(2009)
IEEE Trans. Instrum. Meas.
, vol.58
, Issue.9
, pp. 3069-3078
-
-
Tudu, B.1
-
22
-
-
0034324339
-
An electronic nose system to diagnose illness
-
Nov.
-
J. W. Gardner, H. W. Shin, and E. L. Hines, "An electronic nose system to diagnose illness," Sens. Actuators B, Chem., vol. 70, nos. 1-3, pp. 19-24, Nov. 2000.
-
(2000)
Sens. Actuators B, Chem.
, vol.70
, Issue.1-3
, pp. 19-24
-
-
Gardner, J.W.1
Shin, H.W.2
Hines, E.L.3
-
23
-
-
81155139685
-
Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose
-
Dec.
-
L. Zhang, F. Tian, C. Kadri, G. Pei, H. Li, and L. Pan, "Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose," Sens. Actuators B, Chem., vol. 160, no. 1, pp. 760-770, Dec. 2011.
-
(2011)
Sens. Actuators B, Chem.
, vol.160
, Issue.1
, pp. 760-770
-
-
Zhang, L.1
Tian, F.2
Kadri, C.3
Pei, G.4
Li, H.5
Pan, L.6
-
24
-
-
84902366093
-
Performance study of multilayer perceptrons in a low-cost electronic nose
-
Jul.
-
L. Zhang and F. Tian, "Performance study of multilayer perceptrons in a low-cost electronic nose," IEEE Trans. Instrum. Meas., vol. 63, no. 7, pp. 1670-1679, Jul. 2014.
-
(2014)
IEEE Trans. Instrum. Meas.
, vol.63
, Issue.7
, pp. 1670-1679
-
-
Zhang, L.1
Tian, F.2
-
25
-
-
84864978664
-
Drift correction methods for gas chemical sensors in artificial olfaction systems: Techniques and challenges
-
Jan.
-
S. D. Carlo and M. Falasconi, "Drift correction methods for gas chemical sensors in artificial olfaction systems: Techniques and challenges," Adv. Chem. Sensors, pp. 305-326, Jan. 2012.
-
(2012)
Adv. Chem. Sensors
, pp. 305-326
-
-
Carlo, S.D.1
Falasconi, M.2
-
26
-
-
84861186931
-
Chemical gas sensor drift compensation using classifier ensembles
-
May
-
A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta, "Chemical gas sensor drift compensation using classifier ensembles," Sens. Actuators B, Chem., vols. 166-167, pp. 320-329, May 2012.
-
(2012)
Sens. Actuators B, Chem.
, vol.166-167
, pp. 320-329
-
-
Vergara, A.1
Vembu, S.2
Ayhan, T.3
Ryan, M.A.4
Homer, M.L.5
Huerta, R.6
-
27
-
-
77951105742
-
Long term stability of metal oxide-based gas sensors for E-nose environmental applications: An overview
-
A. C. Romain and J. Nicolas, "Long term stability of metal oxide-based gas sensors for E-nose environmental applications: An overview,"Sens. Actuators B, Chem., vol. 146, no. 2, pp. 502-506, 2010.
-
(2010)
Sens. Actuators B, Chem.
, vol.146
, Issue.2
, pp. 502-506
-
-
Romain, A.C.1
Nicolas, J.2
-
28
-
-
84875692341
-
Chaotic time series prediction of E-nose sensor drift in embedded phase space
-
Jun.
-
L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, and X. Yin, "Chaotic time series prediction of E-nose sensor drift in embedded phase space,"Sens. Actuators B, Chem., vol. 182, pp. 71-79, Jun. 2013.
-
(2013)
Sens. Actuators B, Chem.
, vol.182
, pp. 71-79
-
-
Zhang, L.1
Tian, F.2
Liu, S.3
Dang, L.4
Peng, X.5
Yin, X.6
-
29
-
-
84927724861
-
ELM-based ensemble classifier for gas sensor array drift dataset, computational intelligence, cyber security and computational models
-
Jan.
-
D. A. P. Daniel, K. Thangavel, R. Manavalan, and R. S. C. Boss, "ELM-based ensemble classifier for gas sensor array drift dataset, computational intelligence, cyber security and computational models,"Adv. Intell. Syst. Comput., vol. 246, pp. 89-96, Jan. 2014.
-
(2014)
Adv. Intell. Syst. Comput.
, vol.246
, pp. 89-96
-
-
Daniel, D.A.P.1
Thangavel, K.2
Manavalan, R.3
Boss, R.S.C.4
-
30
-
-
84888025144
-
On the calibration of sensor arrays for pattern recognition using the minimal number of experiments
-
Jan.
-
I. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer, and R. Huerta, "On the calibration of sensor arrays for pattern recognition using the minimal number of experiments," Chemometrics Intell. Lab. Syst., vol. 130, pp. 123-134, Jan. 2014.
-
(2014)
Chemometrics Intell. Lab. Syst.
, vol.130
, pp. 123-134
-
-
Rodriguez-Lujan, I.1
Fonollosa, J.2
Vergara, A.3
Homer, M.4
Huerta, R.5
-
31
-
-
85028217737
-
-
[Online]. Available
-
[Online]. Available: http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
-
-
-
-
33
-
-
0038759361
-
Pattern analysis for machine olfaction: A review
-
Jun.
-
R. Gutierrez-Osuna, "Pattern analysis for machine olfaction: A review,"IEEE Sensors J., vol. 2, no. 3, pp. 189-202, Jun. 2002.
-
(2002)
IEEE Sensors J.
, vol.2
, Issue.3
, pp. 189-202
-
-
Gutierrez-Osuna, R.1
-
34
-
-
0031197282
-
Drift counteraction in odour recognition applications: Lifelong calibration method
-
Aug.
-
M. Holmberg, F. A. M. Davide, C. D. Natale, A. D'Amico, F. Winquist, and I. Lundström, "Drift counteraction in odour recognition applications: Lifelong calibration method," Sens. Actuators B, Chem., vol. 42, no. 3, pp. 185-194, Aug. 1997.
-
(1997)
Sens. Actuators B, Chem.
, vol.42
, Issue.3
, pp. 185-194
-
-
Holmberg, M.1
Davide, F.A.M.2
Natale, C.D.3
D'Amico, A.4
Winquist, F.5
Lundström, I.6
-
35
-
-
0033653314
-
Drift correction for gas sensors using multivariate methods
-
Dec.
-
T. Artursson, T. Eklöv, I. Lundström, P. Mårtensson, M. Sjöström, and M. Holmberg, "Drift correction for gas sensors using multivariate methods," J. Chemometrics, vol. 14, nos. 5-6, pp. 711-723, Dec. 2000.
-
(2000)
J. Chemometrics
, vol.14
, Issue.5-6
, pp. 711-723
-
-
Artursson, T.1
Eklöv, T.2
Lundström, I.3
Mårtensson, P.4
Sjöström, M.5
Holmberg, M.6
-
36
-
-
79960210487
-
Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation
-
Oct.
-
S. D. Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, and A. Tonda, "Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation," Pattern Recognit. Lett., vol. 32, no. 13, pp. 1594-1603, Oct. 2011.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.13
, pp. 1594-1603
-
-
Carlo, S.D.1
Falasconi, M.2
Sanchez, E.3
Scionti, A.4
Squillero, G.5
Tonda, A.6
-
37
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
B. Gong, Y. Shi, F. Sha, and K. Grauman, "Geodesic flow kernel for unsupervised domain adaptation," in Proc. CVPR, 2012, pp. 2066-2073.
-
Proc. CVPR, 2012
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
|