메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3-18

Adaptive Bayesian Methods for Closed-Loop Neurophysiology

Author keywords

Bayesian active learning; Closed loop experiments; Gaussian processes; Maximum mutual information; Minimum mean square error; Predictive distribution; Receptive field; Tuning curve

Indexed keywords


EID: 85013859890     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-12-802452-2.00001-9     Document Type: Chapter
Times cited : (15)

References (64)
  • 1
    • 0042178302 scopus 로고    scopus 로고
    • What causes a neuron to spike?
    • Aguera y., Arcas B., Fairhall A.L. What causes a neuron to spike?. Neural Comput. 2003, 15(8):1789-1807.
    • (2003) Neural Comput. , vol.15 , Issue.8 , pp. 1789-1807
    • Aguera, Y.1    Arcas, B.2    Fairhall, A.L.3
  • 2
    • 34948897019 scopus 로고    scopus 로고
    • From response to stimulus: adaptive sampling in sensory physiology
    • Benda J., Gollisch T., Machens C.K., Herz A.V. From response to stimulus: adaptive sampling in sensory physiology. Curr. Opin. Neurobiol. 2007, 17(4):430-436.
    • (2007) Curr. Opin. Neurobiol. , vol.17 , Issue.4 , pp. 430-436
    • Benda, J.1    Gollisch, T.2    Machens, C.K.3    Herz, A.V.4
  • 3
    • 0000626524 scopus 로고
    • Expected information as expected utility
    • Bernardo J.M. Expected information as expected utility. Ann. Stat. 1979, 7(3):686-690.
    • (1979) Ann. Stat. , vol.7 , Issue.3 , pp. 686-690
    • Bernardo, J.M.1
  • 5
    • 84856264447 scopus 로고    scopus 로고
    • Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina
    • Bölinger D., Gollisch T. Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina. Neuron 2012, 73(2):333-346.
    • (2012) Neuron , vol.73 , Issue.2 , pp. 333-346
    • Bölinger, D.1    Gollisch, T.2
  • 6
    • 84972528615 scopus 로고
    • Bayesian experimental design: a review
    • Chaloner K., Verdinelli I. Bayesian experimental design: a review. Stat. Sci. 1995, 10(3):273-304.
    • (1995) Stat. Sci. , vol.10 , Issue.3 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 7
    • 0013028436 scopus 로고    scopus 로고
    • A simple white noise analysis of neuronal light responses
    • Chichilnisky E.J. A simple white noise analysis of neuronal light responses. Netw. Comput. Neural Syst. 2001, 12:199-213.
    • (2001) Netw. Comput. Neural Syst. , vol.12 , pp. 199-213
    • Chichilnisky, E.J.1
  • 9
    • 74049083714 scopus 로고    scopus 로고
    • Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis
    • Cronin B., Stevenson I.H., Sur M., Körding K.P. Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis. J. Neurophysiol. 2010, 103(1):591-602. http://jn.physiology.org/content/103/1/591.short, 10.1152/jn.00379.2009.
    • (2010) J. Neurophysiol. , vol.103 , Issue.1 , pp. 591-602
    • Cronin, B.1    Stevenson, I.H.2    Sur, M.3    Körding, K.P.4
  • 11
    • 30444433256 scopus 로고    scopus 로고
    • Predicting neuronal responses during natural vision
    • David S.V., Gallant J.L. Predicting neuronal responses during natural vision. Netw. Comput. Neural Syst. 2005, 16(2):239-260.
    • (2005) Netw. Comput. Neural Syst. , vol.16 , Issue.2 , pp. 239-260
    • David, S.V.1    Gallant, J.L.2
  • 12
    • 0032577379 scopus 로고    scopus 로고
    • Optimizing sound features for cortical neurons
    • deCharms R.C., Blake D.T., Merzenich M.M. Optimizing sound features for cortical neurons. Science 1998, 280(5368):1439-1443.
    • (1998) Science , vol.280 , Issue.5368 , pp. 1439-1443
    • deCharms, R.C.1    Blake, D.T.2    Merzenich, M.M.3
  • 13
    • 80051594195 scopus 로고    scopus 로고
    • Active data collection for efficient estimation and comparison of nonlinear neural models
    • DiMattina C., Zhang K. Active data collection for efficient estimation and comparison of nonlinear neural models. Neural Comput. 2011, 23(9):2242-2288.
    • (2011) Neural Comput. , vol.23 , Issue.9 , pp. 2242-2288
    • DiMattina, C.1    Zhang, K.2
  • 14
    • 84878974360 scopus 로고    scopus 로고
    • Adaptive stimulus optimization for sensory systems neuroscience
    • DiMattina C., Zhang K. Adaptive stimulus optimization for sensory systems neuroscience. Front. Neural Circuits 2013, 7:101.
    • (2013) Front. Neural Circuits , vol.7 , pp. 101
    • DiMattina, C.1    Zhang, K.2
  • 15
    • 0035384014 scopus 로고    scopus 로고
    • Stimulus optimisation in primary visual cortex
    • Földiák P. Stimulus optimisation in primary visual cortex. Neurocomputing 2001, 38:1217-1222.
    • (2001) Neurocomputing , vol.38 , pp. 1217-1222
    • Földiák, P.1
  • 16
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • Gilks W.R., Berzuini C. Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B 2001, 63(1):127-146.
    • (2001) J. R. Stat. Soc. Ser. B , vol.63 , Issue.1 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 17
    • 84871329115 scopus 로고    scopus 로고
    • The iso-response method: measuring neuronal stimulus integration with closed-loop experiments
    • Gollisch T., Herz A.V. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments. Front. Neural Circuits 2012, 6:104.
    • (2012) Front. Neural Circuits , vol.6 , pp. 104
    • Gollisch, T.1    Herz, A.V.2
  • 18
    • 84901592897 scopus 로고    scopus 로고
    • Partitioning neuronal variability
    • Goris R.L.T., Movshon J.A., Simoncelli E.P. Partitioning neuronal variability. Nat. Neurosci. 2014, 17(6):858-865. http://dx.doi.org/10.1038/nn.3711.
    • (2014) Nat. Neurosci. , vol.17 , Issue.6 , pp. 858-865
    • Goris, R.L.T.1    Movshon, J.A.2    Simoncelli, E.P.3
  • 19
    • 84861566519 scopus 로고    scopus 로고
    • Nonlinear analysis of macaque v1 color tuning reveals cardinal directions for cortical color processing
    • Horwitz G.D., Hass C.A. Nonlinear analysis of macaque v1 color tuning reveals cardinal directions for cortical color processing. Nat. Neurosci. 2012, 06, 15(6):913-919.
    • (2012) Nat. Neurosci. , vol.15 , Issue.6 , pp. 913-919
    • Horwitz, G.D.1    Hass, C.A.2
  • 22
    • 78651376222 scopus 로고    scopus 로고
    • Local field potentials indicate network state and account for neuronal response variability
    • Kelly R.C., Smith M.A., Kass R.E., Lee T.S. Local field potentials indicate network state and account for neuronal response variability. J. Comput. Neurosci. 2010, 29(3):567-579.
    • (2010) J. Comput. Neurosci. , vol.29 , Issue.3 , pp. 567-579
    • Kelly, R.C.1    Smith, M.A.2    Kass, R.E.3    Lee, T.S.4
  • 23
    • 84931324513 scopus 로고    scopus 로고
    • A hierarchical adaptive approach to optimal experimental design
    • 2015/02/09
    • Kim W., Pitt M.A., Lu Z.L., Steyvers M., Myung J.I. A hierarchical adaptive approach to optimal experimental design. Neural Comput. 2014, 2015/02/09, 26(11):2465-2492. http://dx.doi.org/10.1162/NECO_a_00654.
    • (2014) Neural Comput. , vol.26 , Issue.11 , pp. 2465-2492
    • Kim, W.1    Pitt, M.A.2    Lu, Z.L.3    Steyvers, M.4    Myung, J.I.5
  • 24
    • 0028316118 scopus 로고
    • Efficient and unbiased modifications of the quest threshold method: theory, simulations, experimental evaluation and practical implementation
    • King-Smith P.E., Grigsby S.S., Vingrys A.J., Benes S.C., Supowit A. Efficient and unbiased modifications of the quest threshold method: theory, simulations, experimental evaluation and practical implementation. Vis. Res. 1994, 34(7):885-912.
    • (1994) Vis. Res. , vol.34 , Issue.7 , pp. 885-912
    • King-Smith, P.E.1    Grigsby, S.S.2    Vingrys, A.J.3    Benes, S.C.4    Supowit, A.5
  • 25
    • 56449106538 scopus 로고    scopus 로고
    • Information transmission in oscillatory neural activity
    • Koepsell K., Sommer F.T. Information transmission in oscillatory neural activity. Biol. Cybernet. 2008, 99(4):403-416.
    • (2008) Biol. Cybernet. , vol.99 , Issue.4 , pp. 403-416
    • Koepsell, K.1    Sommer, F.T.2
  • 26
    • 0033001361 scopus 로고    scopus 로고
    • Bayesian adaptive estimation of psychometric slope and threshold
    • Kontsevich L.L., Tyler C.W. Bayesian adaptive estimation of psychometric slope and threshold. Vision Res. 1999, 39:2729-12737.
    • (1999) Vision Res. , vol.39 , pp. 2729-12737
    • Kontsevich, L.L.1    Tyler, C.W.2
  • 27
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
    • Krause A., Singh A., Guestrin C. Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 2008, 9:235-284. http://portal.acm.org/citation.cfm?id=1390689, 1532-4435.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 29
    • 63249126388 scopus 로고    scopus 로고
    • Sequential optimal design of neurophysiology experiments
    • Lewi J., Butera R., Paninski L. Sequential optimal design of neurophysiology experiments. Neural Comput. 2009, 21(3):619-687.
    • (2009) Neural Comput. , vol.21 , Issue.3 , pp. 619-687
    • Lewi, J.1    Butera, R.2    Paninski, L.3
  • 30
    • 84858785315 scopus 로고    scopus 로고
    • Designing neurophysiology experiments to optimally constrain receptive field models along parametric submanifolds
    • Curran Associates, Inc., Red Hook, NY, D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.)
    • Lewi J., Butera R., Schneider D.M., Woolley S., Paninski L. Designing neurophysiology experiments to optimally constrain receptive field models along parametric submanifolds. Advances in Neural Information Processing Systems 21 2009, 945-952. Curran Associates, Inc., Red Hook, NY. D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.).
    • (2009) Advances in Neural Information Processing Systems 21 , pp. 945-952
    • Lewi, J.1    Butera, R.2    Schneider, D.M.3    Woolley, S.4    Paninski, L.5
  • 31
    • 79952281892 scopus 로고    scopus 로고
    • Automating the design of informative sequences of sensory stimuli
    • Lewi J., Schneider D.M., Woolley S.M.N., Paninski L. Automating the design of informative sequences of sensory stimuli. J. Comput. Neurosci. 2011, Feb, 30(1):181-200. http://dx.doi.org/10.1007/s10827-010-0248-1.
    • (2011) J. Comput. Neurosci. , vol.30 , Issue.1 , pp. 181-200
    • Lewi, J.1    Schneider, D.M.2    Woolley, S.M.N.3    Paninski, L.4
  • 33
    • 0001249987 scopus 로고
    • On a measure of the information provided an experiment
    • Lindley D. On a measure of the information provided an experiment. Ann. Math. Stat. 1956, 27:986-1005.
    • (1956) Ann. Math. Stat. , vol.27 , pp. 986-1005
    • Lindley, D.1
  • 34
    • 0041951414 scopus 로고
    • The use of transinformation in the design of data sampling scheme for inverse problems
    • Luttrell S.P. The use of transinformation in the design of data sampling scheme for inverse problems. Inverse Prob. 1985, 1:199-218.
    • (1985) Inverse Prob. , vol.1 , pp. 199-218
    • Luttrell, S.P.1
  • 35
    • 23044462075 scopus 로고    scopus 로고
    • Testing the efficiency of sensory coding with optimal stimulus ensembles
    • Machens C.K., Gollisch T., Kolesnikova O., Herz A.V.M. Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron 2005, 47(3):447-456. http://dx.doi.org/10.1016/j.neuron.2005.06.015.
    • (2005) Neuron , vol.47 , Issue.3 , pp. 447-456
    • Machens, C.K.1    Gollisch, T.2    Kolesnikova, O.3    Herz, A.V.M.4
  • 36
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • Mackay D. Information-based objective functions for active data selection. Neural Comput. 1992, 4:589-603.
    • (1992) Neural Comput. , vol.4 , pp. 589-603
    • Mackay, D.1
  • 37
    • 79954999812 scopus 로고    scopus 로고
    • Gaussian process methods for estimating cortical maps
    • Macke J.H., Gerwinn S., White L.E., Kaschube M., Bethge M. Gaussian process methods for estimating cortical maps. Neuroimage 2011, 56(2):570-581. http://dx.doi.org/10.1016/j.neuroimage.2010.04.272.
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 570-581
    • Macke, J.H.1    Gerwinn, S.2    White, L.E.3    Kaschube, M.4    Bethge, M.5
  • 40
    • 0028049410 scopus 로고
    • In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex
    • Nelken I., Prut Y., Vaadia E., Abeles M. In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex. Hear. Res. 1994, 72:237-253.
    • (1994) Hear. Res. , vol.72 , pp. 237-253
    • Nelken, I.1    Prut, Y.2    Vaadia, E.3    Abeles, M.4
  • 41
    • 27644476827 scopus 로고    scopus 로고
    • Adaptive stimulus optimization for auditory cortical neurons
    • O'Connor K.N., Petkov C.I., Sutter M.L. Adaptive stimulus optimization for auditory cortical neurons. J. Neurophysiol. 2005, 94(6):4051-4067.
    • (2005) J. Neurophysiol. , vol.94 , Issue.6 , pp. 4051-4067
    • O'Connor, K.N.1    Petkov, C.I.2    Sutter, M.L.3
  • 42
    • 85021959731 scopus 로고    scopus 로고
    • Design of experiments via information theory
    • Paninski L. Design of experiments via information theory. Adv. Neural Inform. Process. Syst. 2003, 16:1319-1326.
    • (2003) Adv. Neural Inform. Process. Syst. , vol.16 , pp. 1319-1326
    • Paninski, L.1
  • 43
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski L. Maximum likelihood estimation of cascade point-process neural encoding models. Netw. Comput. Neural Syst. 2004, 15:243-262.
    • (2004) Netw. Comput. Neural Syst. , vol.15 , pp. 243-262
    • Paninski, L.1
  • 44
    • 18744390761 scopus 로고    scopus 로고
    • Asymptotic theory of information-theoretic experimental design
    • Paninski L. Asymptotic theory of information-theoretic experimental design. Neural Comput. 2005, 17(7):1480-1507.
    • (2005) Neural Comput. , vol.17 , Issue.7 , pp. 1480-1507
    • Paninski, L.1
  • 45
    • 85162477467 scopus 로고    scopus 로고
    • Active learning of neural response functions with Gaussian processes
    • J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Eds.)
    • Park M., Horwitz G., Pillow J.W. Active learning of neural response functions with Gaussian processes. Advances in Neural Information Processing Systems 24 2011, 2043-2051. J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Eds.).
    • (2011) Advances in Neural Information Processing Systems 24 , pp. 2043-2051
    • Park, M.1    Horwitz, G.2    Pillow, J.W.3
  • 46
    • 80055065461 scopus 로고    scopus 로고
    • Receptive field inference with localized priors
    • Park M., Pillow J.W. Receptive field inference with localized priors. PLoS Comput. Biol. 2011, 7(10):e1002219. http://dx.doi.org/10.1371%2Fjournal.pcbi.1002219.
    • (2011) PLoS Comput. Biol. , vol.7 , Issue.10 , pp. e1002219
    • Park, M.1    Pillow, J.W.2
  • 47
    • 84877778022 scopus 로고    scopus 로고
    • Bayesian active learning with localized priors for fast receptive field characterization
    • P. Bartlett, F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.)
    • Park M., Pillow J.W. Bayesian active learning with localized priors for fast receptive field characterization. Advances in Neural Information Processing Systems 25 2012, 2357-2365. http://books.nips.cc/papers/files/nips25/NIPS2012_1144.pdf, P. Bartlett, F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.).
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 2357-2365
    • Park, M.1    Pillow, J.W.2
  • 48
    • 84898999615 scopus 로고    scopus 로고
    • Bayesian inference for low rank spatiotemporal neural receptive fields
    • Park M., Pillow J.W. Bayesian inference for low rank spatiotemporal neural receptive fields. Adv. Neural Inform. Process. Syst. 26 2013, 2688-2696. http://media.nips.cc/nipsbooks/nipspapers/paper_files/nips26/1259.pdf.
    • (2013) Adv. Neural Inform. Process. Syst. 26 , pp. 2688-2696
    • Park, M.1    Pillow, J.W.2
  • 50
    • 84929249823 scopus 로고    scopus 로고
    • Bayesian active learning of neural firing rate maps with transformed Gaussian process priors
    • Park M., Weller J.P., Horwitz G.D., Pillow J.W. Bayesian active learning of neural firing rate maps with transformed Gaussian process priors. Neural Comput. 2014, 26(8):1519-1541. http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00615.
    • (2014) Neural Comput. , vol.26 , Issue.8 , pp. 1519-1541
    • Park, M.1    Weller, J.P.2    Horwitz, G.D.3    Pillow, J.W.4
  • 51
    • 78650608745 scopus 로고    scopus 로고
    • Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains
    • Pillow J.W., Ahmadian Y., Paninski L. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput. 2011, Jan, 23(1):1-45. http://dx.doi.org/10.1162/NECO_a_00058.
    • (2011) Neural Comput. , vol.23 , Issue.1 , pp. 1-45
    • Pillow, J.W.1    Ahmadian, Y.2    Paninski, L.3
  • 53
    • 78650013543 scopus 로고    scopus 로고
    • Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods
    • Rad K.R., Paninski L. Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods. Netw. Comput. Neural Syst. 2010, 21(3-4):142-168.
    • (2010) Netw. Comput. Neural Syst. , vol.21 , Issue.3-4 , pp. 142-168
    • Rad, K.R.1    Paninski, L.2
  • 56
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Morgan Kaufmann, San Francisco, CA
    • Roy N., Mccallum A. Toward optimal active learning through sampling estimation of error reduction. Proceedings of the 18th International Conference on Machine Learning 2001, 441-448. Morgan Kaufmann, San Francisco, CA.
    • (2001) Proceedings of the 18th International Conference on Machine Learning , pp. 441-448
    • Roy, N.1    Mccallum, A.2
  • 57
    • 20444369637 scopus 로고    scopus 로고
    • Spatiotemporal elements of macaque V1 receptive fields
    • Rust N.C., Schwartz O., Movshon J.A., Simoncelli E.P. Spatiotemporal elements of macaque V1 receptive fields. Neuron 2005, 46(6):945-956. http://dx.doi.org/10.1016/j.neuron.2005.05.021.
    • (2005) Neuron , vol.46 , Issue.6 , pp. 945-956
    • Rust, N.C.1    Schwartz, O.2    Movshon, J.A.3    Simoncelli, E.P.4
  • 58
    • 33746478189 scopus 로고    scopus 로고
    • Spike-triggered neural characterization
    • Schwartz O., Pillow J.W., Rust N.C., Simoncelli E.P. Spike-triggered neural characterization. J. Vis 2006, 6(4):484-507. http://journalofvision.org/6/4/13/, 1534-7362.
    • (2006) J. Vis , vol.6 , Issue.4 , pp. 484-507
    • Schwartz, O.1    Pillow, J.W.2    Rust, N.C.3    Simoncelli, E.P.4
  • 59
    • 78049381664 scopus 로고    scopus 로고
    • Bayesian inference for sparse generalized linear models
    • Springer, New York
    • Seeger M., Gerwinn S., Bethge M. Bayesian inference for sparse generalized linear models. Machine Learning: ECML 2007, Springer, New York.
    • (2007) Machine Learning: ECML
    • Seeger, M.1    Gerwinn, S.2    Bethge, M.3
  • 60
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • Truccolo W., Eden U.T., Fellows M.R., Donoghue J.P., Brown E.N. A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol. 2005, 93(2):1074-1089.
    • (2005) J. Neurophysiol. , vol.93 , Issue.2 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 61
    • 57349095199 scopus 로고    scopus 로고
    • Indices for testing neural codes
    • Victor J.D., Nirenberg S. Indices for testing neural codes. Neural Comput. 2008, 20(12):2895-2936. http://dx.doi.org/10.1162/neco.2008.10-07-633.
    • (2008) Neural Comput. , vol.20 , Issue.12 , pp. 2895-2936
    • Victor, J.D.1    Nirenberg, S.2
  • 62
    • 0020713980 scopus 로고
    • QUEST: a Bayesian adaptive psychophysical method
    • Watson A., Pelli D. QUEST: a Bayesian adaptive psychophysical method. Percept. Psychophys. 1983, 33:113-120.
    • (1983) Percept. Psychophys. , vol.33 , pp. 113-120
    • Watson, A.1    Pelli, D.2
  • 63
    • 84937826877 scopus 로고    scopus 로고
    • Sparse Bayesian structure learning with dependent relevance determination priors
    • Curran Associates, Inc. Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.)
    • Wu A., Park M., Koyejo O.O., Pillow J.W. Sparse Bayesian structure learning with dependent relevance determination priors. Advances in Neural Information Processing Systems 27 2014, 1628-1636. Curran Associates, Inc. http://papers.nips.cc/paper/5233-sparse-bayesian-structure-learning-with-dependent-relevance-determination-priors.pdf, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.).
    • (2014) Advances in Neural Information Processing Systems 27 , pp. 1628-1636
    • Wu, A.1    Park, M.2    Koyejo, O.O.3    Pillow, J.W.4
  • 64
    • 67649610065 scopus 로고    scopus 로고
    • Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
    • Yu B.M., Cunningham J.P., Santhanam G., Ryu S.I., Shenoy K.V., Sahani M. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 2009, 102(1):614.
    • (2009) J. Neurophysiol. , vol.102 , Issue.1 , pp. 614
    • Yu, B.M.1    Cunningham, J.P.2    Santhanam, G.3    Ryu, S.I.4    Shenoy, K.V.5    Sahani, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.