메뉴 건너뛰기




Volumn 23, Issue 9, 2011, Pages 2242-2288

Active data collection for efficient estimation and comparison of nonlinear neural models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; LETTER; NERVE CELL; NONLINEAR SYSTEM; PHYSIOLOGY;

EID: 80051594195     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00167     Document Type: Letter
Times cited : (35)

References (90)
  • 1
    • 38349049639 scopus 로고    scopus 로고
    • Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods
    • Ahrens,M. B., Linden, J. F., & Sahani, M. (2008). Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods. J. Neurosci., 28, 1929-1942.
    • (2008) J. Neurosci. , vol.28 , pp. 1929-1942
    • Ahrens, M.B.1    Linden, J.F.2    Sahani, M.3
  • 2
    • 40049096305 scopus 로고    scopus 로고
    • Inferring input nonlinearities in neural encoding models
    • Ahrens, M. B., Paninski, L., & Sahani, M. (2008). Inferring input nonlinearities in neural encoding models. Network, 21, 35-67.
    • (2008) Network , vol.21 , pp. 35-67
    • Ahrens, M.B.1    Paninski, L.2    Sahani, M.3
  • 3
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using gaussian sum approximation
    • Alspach, D. & Sorenson, H. (1972). Nonlinear Bayesian estimation using gaussian sum approximation. IEEE Trans. Auto. Contr., 17, 439-448.
    • (1972) IEEE Trans. Auto. Contr. , vol.17 , pp. 439-448
    • Alspach, D.1    Sorenson, H.2
  • 4
    • 70449366397 scopus 로고    scopus 로고
    • Long-lasting context dependence constrains neural encoding models in rodent auditory cortex
    • Asari, H., & Zador, A. M. (2009). Long-lasting context dependence constrains neural encoding models in rodent auditory cortex. J. Neurophysiol., 102, 2638-2656.
    • (2009) J. Neurophysiol. , vol.102 , pp. 2638-2656
    • Asari, H.1    Zador, A.M.2
  • 6
    • 85041935631 scopus 로고
    • The design of experiments for discriminating between two models
    • Atkinson, A. C., & Fedorov, V. V. (1975a). The design of experiments for discriminating between two models. Biometrika, 62, 57-70.
    • (1975) Biometrika , vol.62 , pp. 57-70
    • Atkinson, A.C.1    Fedorov, V.V.2
  • 7
    • 0016706915 scopus 로고
    • Optimal design: Experiments for discriminating between several models
    • Atkinson, A. C., & Fedorov, V. V. (1975b). Optimal design: Experiments for discriminating between several models. Biometrika, 62, 289-303.
    • (1975) Biometrika , vol.62 , pp. 289-303
    • Atkinson, A.C.1    Fedorov, V.V.2
  • 8
    • 0347684419 scopus 로고    scopus 로고
    • How to assess a model's testability and identifiability
    • Bamber, D., & van Santen, J.P.H. (2000). How to assess a model's testability and identifiability. J. Math. Psychol., 44, 20-40.
    • (2000) J. Math. Psychol. , vol.44 , pp. 20-40
    • Bamber, D.1    van Santen, J.P.H.2
  • 9
    • 37549000993 scopus 로고    scopus 로고
    • Receptive fields for dorsal cochlear nucleus neurons at multiple sound levels
    • Bandyopadhyay, S., Reiss, L. A., & Young, E. D. (2007). Receptive fields for dorsal cochlear nucleus neurons at multiple sound levels. J. Neurophysiol., 98, 3505-3515.
    • (2007) J. Neurophysiol. , vol.98 , pp. 3505-3515
    • Bandyopadhyay, S.1    Reiss, L.A.2    Young, E.D.3
  • 11
    • 34948897019 scopus 로고    scopus 로고
    • From response to stimulus: Adaptive sampling in sensory physiology
    • Benda, J., Gollisch, T., Machens, C. K., & Herz, A. V. (2007). From response to stimulus: Adaptive sampling in sensory physiology. Curr. Opin Neurobiol., 17, 430-436.
    • (2007) Curr. Opin Neurobiol. , vol.17 , pp. 430-436
    • Benda, J.1    Gollisch, T.2    Machens, C.K.3    Herz, A.V.4
  • 12
    • 57949085983 scopus 로고    scopus 로고
    • Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems
    • D. Nolan & T. Speed (Eds.), Beechwood, OH: Institute of Mathematical Statistics
    • Bengtsson, T., Bickel, P., & Li, B. (2008). Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. In D. Nolan & T. Speed (Eds.), Probability and statistics: Essays in honor of David A. Freedman (pp. 316-334). Beechwood, OH: Institute of Mathematical Statistics.
    • (2008) Probability and statistics: Essays in honor of David A. Freedman. , pp. 316-334
    • Bengtsson, T.1    Bickel, P.2    Li, B.3
  • 13
    • 64149128340 scopus 로고    scopus 로고
    • Sharp failure rates for the bootstrap particle filter in high dimensions
    • B. Clarke & S. Ghosal (Eds.), Beechwood, OH: Institute of Mathematical Statistics
    • Bickel, P., Li, B., & Bengtsson, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions. In B. Clarke & S. Ghosal (Eds.), Pushing the limits of contemporary statistics: Contributions in honor of Jayanta K. Ghosh (pp. 318-329). Beechwood, OH: Institute of Mathematical Statistics.
    • (2008) Pushing the limits of contemporary statistics: Contributions in honor of Jayanta K. Ghosh. , pp. 318-329
    • Bickel, P.1    Li, B.2    Bengtsson, T.3
  • 15
    • 0038238881 scopus 로고    scopus 로고
    • Using genetic algorithms to find the most effective stimulus for sensory neurons
    • Bleeck, S., Patterson, R. D., & Winter, I. M. (2003). Using genetic algorithms to find the most effective stimulus for sensory neurons. Journal of Neuroscience Methods, 125, 73-82.
    • (2003) Journal of Neuroscience Methods , vol.125 , pp. 73-82
    • Bleeck, S.1    Patterson, R.D.2    Winter, I.M.3
  • 16
    • 0032530363 scopus 로고    scopus 로고
    • Astatistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • Brown, E.N., Frank, L. M., Tang, D.,Quirk,M.C.,&Wilson,M. A. (1998). Astatistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411-7425.
    • (1998) Journal of Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.N.1    Frank, L.M.2    Tang, D.3    Quirk, M.C.4    Wilson, M.A.5
  • 19
    • 0037112044 scopus 로고    scopus 로고
    • Asynaptic explanation of suppression in visual cortex
    • Carandini, M.,Heeger,D. J.,&Senn,W. (2002). Asynaptic explanation of suppression in visual cortex. Journal of Neuroscience, 22, 10053-10065.
    • (2002) Journal of Neuroscience , vol.22 , pp. 10053-10065
    • Carandini, M.1    Heeger, D.J.2    Senn, W.3
  • 21
    • 77953334192 scopus 로고    scopus 로고
    • Adaptive design optimization: A mutual information based approach to model discrimination in cognitive science
    • Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala, J. V. (2010). Adaptive design optimization: A mutual information based approach to model discrimination in cognitive science. Neural Comput., 22, 887-905.
    • (2010) Neural Comput. , vol.22 , pp. 887-905
    • Cavagnaro, D.R.1    Myung, J.I.2    Pitt, M.A.3    Kujala, J.V.4
  • 22
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review. Stat. Sci., 10, 273-304.
    • (1995) Stat. Sci. , vol.10 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 23
    • 37649000784 scopus 로고    scopus 로고
    • Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex
    • Chen, X., Han, F., Poo, M. M., & Dan, Y. (2007). Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex. Proc. Nat. Acad. Sci., 104, 19120-19125.
    • (2007) Proc. Nat. Acad. Sci. , vol.104 , pp. 19120-19125
    • Chen, X.1    Han, F.2    Poo, M.M.3    Dan, Y.4
  • 24
    • 0030221433 scopus 로고    scopus 로고
    • Neural network exploration using optimal experimental design
    • Cohn, D. A. (1996). Neural network exploration using optimal experimental design. Neural Netw., 9, 1071-1083.
    • (1996) Neural Netw , vol.9 , pp. 1071-1083
    • Cohn, D.A.1
  • 27
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2, 303-314.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 28
    • 30444433256 scopus 로고    scopus 로고
    • Predicting neuronal responses during natural vision
    • David, S. V., & Gallant, J. L. (2005). Predicting neuronal responses during natural vision. Network, 16, 239-260.
    • (2005) Network , vol.16 , pp. 239-260
    • David, S.V.1    Gallant, J.L.2
  • 29
    • 63849278675 scopus 로고    scopus 로고
    • Rapid synaptic depression explains nonlinearmodulation of spectro-temporal tuning in primary auditory cortex by natural stimuli
    • David, S. V., Mesgarini, N., Fritz, J. B., & Shamma, S. A. (2009). Rapid synaptic depression explains nonlinearmodulation of spectro-temporal tuning in primary auditory cortex by natural stimuli. J. Neurosci., 29, 3374-3386.
    • (2009) J. Neurosci. , vol.29 , pp. 3374-3386
    • David, S.V.1    Mesgarini, N.2    Fritz, J.B.3    Shamma, S.A.4
  • 30
    • 3843090696 scopus 로고    scopus 로고
    • Natural stimulus statistics alter the receptive field stucture of v1 neurons
    • David, S. V., Vinje, W. E., & Gallant, J. L. (2004). Natural stimulus statistics alter the receptive field stucture of v1 neurons. J. Neurosci., 24, 6991-7006.
    • (2004) J. Neurosci. , vol.24 , pp. 6991-7006
    • David, S.V.1    Vinje, W.E.2    Gallant, J.L.3
  • 31
    • 0019856238 scopus 로고
    • The variability of discharge of simple cells in the cat striate cortex. Exp
    • Dean, A. F. (1981). The variability of discharge of simple cells in the cat striate cortex. Exp. Brain Res., 44, 437-440.
    • (1981) Brain Res. , vol.44 , pp. 437-440
    • Dean, A.F.1
  • 32
    • 0032053955 scopus 로고    scopus 로고
    • Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey
    • DiCarlo, J. J., Johnson, K. O., & Hsiao, S. S. (1998). Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey. J. Neurosci., 18, 2626-2645.
    • (1998) J. Neurosci. , vol.18 , pp. 2626-2645
    • DiCarlo, J.J.1    Johnson, K.O.2    Hsiao, S.S.3
  • 33
    • 41549083892 scopus 로고    scopus 로고
    • How optimal stimuli for sensory neurons are constrained by network architecture
    • DiMattina, C., & Zhang, K. (2008). How optimal stimuli for sensory neurons are constrained by network architecture. Neural Comput., 20, 668-708.
    • (2008) Neural Comput. , vol.20 , pp. 668-708
    • DiMattina, C.1    Zhang, K.2
  • 34
    • 77649249604 scopus 로고    scopus 로고
    • How to modify a neural network gradually without changing its input-output functionality
    • DiMattina, C., & Zhang, K. (2010). How to modify a neural network gradually without changing its input-output functionality. Neural Comput., 22, 1-47.
    • (2010) Neural Comput. , vol.22 , pp. 1-47
    • DiMattina, C.1    Zhang, K.2
  • 35
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective sampling using the query by committee algorithm. Machine Learning, 28, 133-168.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 37
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-gaussian Bayesian state estimation
    • Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEE Proceedings-F, 140, 107-113.
    • (1993) IEE Proceedings-F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 39
    • 0016303884 scopus 로고
    • Alopex: A stochastic method for determining visual receptive fields
    • Harth, E., & Tzanakou, E. (1974). Alopex: A stochastic method for determining visual receptive fields. Vision Research, 14, 1475-1482.
    • (1974) Vision Research , vol.14 , pp. 1475-1482
    • Harth, E.1    Tzanakou, E.2
  • 42
    • 56149108618 scopus 로고    scopus 로고
    • Gaussian sum approach with optimal experimental design forneural network
    • ACTA Press
    • Hering, P., & Simandl, M. (2007). Gaussian sum approach with optimal experimental design forneural network. In Ninth IASTED Conference on Signal and Image Processing (pp. 425-430). ACTA Press.
    • (2007) Ninth IASTED Conference on Signal and Image Processing , pp. 425-430
    • Hering, P.1    Simandl, M.2
  • 44
    • 0024880831 scopus 로고
    • Multi-layer feed-forward neural networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feed-forward neural networks are universal approximators. Neural Netw., 2, 359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 45
    • 0023604532 scopus 로고
    • The two-dimensional spatial structure of simple receptive fields in cat striate cortex
    • Jones, J. P., & Palmer, L. A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol., 58, 1187-1211.
    • (1987) J. Neurophysiol. , vol.58 , pp. 1187-1211
    • Jones, J.P.1    Palmer, L.A.2
  • 46
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82 (Series D), 35-45.
    • (1960) Transactions of the ASME-Journal of Basic Engineering , vol.82 , Issue.SERIES D , pp. 35-45
    • Kalman, R.E.1
  • 48
    • 33646861010 scopus 로고    scopus 로고
    • Bayesian adaptive estimation: The next dimension
    • Kujala, J. V.,&Lukka, T. J. (2006). Bayesian adaptive estimation: The next dimension. J. Math. Psychol., 50, 369-389.
    • (2006) J. Math. Psychol. , vol.50 , pp. 369-389
    • Kujala, J.V.1    Lukka, T.J.2
  • 49
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Stat., 22, 79-86.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 50
    • 0037172984 scopus 로고    scopus 로고
    • Computational subunits of visual cortical neurons revealed by artificial neural networks
    • Lau, B., Stanley, G. B., & Dan, Y. (2002). Computational subunits of visual cortical neurons revealed by artificial neural networks. Proc. Natl. Acad. Sci. USA, 99, 8974-8979.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 8974-8979
    • Lau, B.1    Stanley, G.B.2    Dan, Y.3
  • 51
    • 0026774684 scopus 로고
    • Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns
    • Lehky, S. R., Sejnowski, T. J.,&Desimone,R. (1992). Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns. J. Neurosci., 12, 3568-3581.
    • (1992) J. Neurosci. , vol.12 , pp. 3568-3581
    • Lehky, S.R.1    Sejnowski, T.J.2    Desimone, R.3
  • 52
    • 63249126388 scopus 로고    scopus 로고
    • Sequential optimal design of neurophysiology experiments
    • Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. Neural Comput., 21, 619-687.
    • (2009) Neural Comput. , vol.21 , pp. 619-687
    • Lewi, J.1    Butera, R.2    Paninski, L.3
  • 53
    • 79952281892 scopus 로고    scopus 로고
    • Automating the design of informative sequences of sensory stimuli
    • Lewi, J., Schneider, D. M., Woolley, S. M., & Paninski, L. (2011). Automating the design of informative sequences of sensory stimuli. J. Comput. Neurosci., 30, 181-200.
    • (2011) J. Comput. Neurosci. , vol.30 , pp. 181-200
    • Lewi, J.1    Schneider, D.M.2    Woolley, S.M.3    Paninski, L.4
  • 55
    • 0037014273 scopus 로고    scopus 로고
    • Adaptive sampling by information maximization
    • Machens, C. K. (2002). Adaptive sampling by information maximization. Phys. Rev. Lett., 88, 228104.
    • (2002) Phys. Rev. Lett. , vol.88 , pp. 228104
    • Machens, C.K.1
  • 56
    • 23044462075 scopus 로고    scopus 로고
    • Testing the efficiency of sensory coding with optimal stimulus ensembles
    • Machens, C. K., Gollisch, T., Kolesnikova, O., & Herz, A. V. (2005). Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47, 447-456.
    • (2005) Neuron , vol.47 , pp. 447-456
    • Machens, C.K.1    Gollisch, T.2    Kolesnikova, O.3    Herz, A.V.4
  • 57
    • 0002704818 scopus 로고
    • Information based objective functions for active data collection
    • MacKay, D. J. C. (1992). Information based objective functions for active data collection. Neural Comput., 4, 448-472.
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 61
    • 21344450598 scopus 로고
    • Optimal design via curve fitting of Monte Carlo experiments
    • Muller, P., & Parmigiani, G. (1995). Optimal design via curve fitting of Monte Carlo experiments. J. Amer. Stat. Assn., 90, 1322-1330.
    • (1995) J. Amer. Stat. Assn. , vol.90 , pp. 1322-1330
    • Muller, P.1    Parmigiani, G.2
  • 62
    • 0345792472 scopus 로고    scopus 로고
    • The importance of complexity inmodel selection
    • Myung, J. (2000). The importance of complexity inmodel selection. J. Math. Psychol., 44, 190-204.
    • (2000) J. Math. Psychol. , vol.44 , pp. 190-204
    • Myung, J.1
  • 63
    • 0028049410 scopus 로고
    • In search of the best stimulus: An optimization procedure for finding efficient stimuli in the cat auditory cortex
    • Nelken, I., Pruta, Y., Vaadiaa, E., & Abeles, M. (1994). In search of the best stimulus: An optimization procedure for finding efficient stimuli in the cat auditory cortex. Hearing Research, 72, 237-253.
    • (1994) Hearing Research , vol.72 , pp. 237-253
    • Nelken, I.1    Pruta, Y.2    Vaadiaa, E.3    Abeles, M.4
  • 64
    • 27944459371 scopus 로고    scopus 로고
    • Finding useful questions: On Bayesian diagnosticity, probability, impact, and information gain
    • Nelson, J. (2005). Finding useful questions: On Bayesian diagnosticity, probability, impact, and information gain. Psychol. Rev., 112, 979-999.
    • (2005) Psychol. Rev. , vol.112 , pp. 979-999
    • Nelson, J.1
  • 65
    • 27644476827 scopus 로고    scopus 로고
    • Adaptive stimulus optimization for auditory cortical neurons
    • O'Connor, K. N., Petkov, C. I.,&Sutter,M. L. (2005). Adaptive stimulus optimization for auditory cortical neurons. J. Neurophysiol., 94, 4051-4067.
    • (2005) J. Neurophysiol. , vol.94 , pp. 4051-4067
    • O'Connor, K.N.1    Petkov, C.I.2    Sutter, M.L.3
  • 66
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15, 243-262.
    • (2004) Network , vol.15 , pp. 243-262
    • Paninski, L.1
  • 67
    • 18744390761 scopus 로고    scopus 로고
    • Asymptotic theory of information-theoretic experimental design
    • Paninski, L. (2005). Asymptotic theory of information-theoretic experimental design. Neural Comput., 17, 1480-1507.
    • (2005) Neural Comput. , vol.17 , pp. 1480-1507
    • Paninski, L.1
  • 68
    • 85047674682 scopus 로고    scopus 로고
    • Toward a method of selecting among computational models of cognition
    • Pitt, M. A., Myung, J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychol. Review, 3, 472-491.
    • (2002) Psychol. Review , vol.3 , pp. 472-491
    • Pitt, M.A.1    Myung, J.2    Zhang, S.3
  • 69
    • 4344612285 scopus 로고    scopus 로고
    • Nonlinear V1 responses to natural scenes revealed by neural network analysis
    • Prenger, R., Wu, M. C., David, S. V., & Gallant, J. L. (2004). Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Netw., 17, 663-679.
    • (2004) Neural Netw , vol.17 , pp. 663-679
    • Prenger, R.1    Wu, M.C.2    David, S.V.3    Gallant, J.L.4
  • 70
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nat. Neurosci., 2, 1019-1025.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 72
    • 20444369637 scopus 로고    scopus 로고
    • Spatiotemporal elements of macaque V1 receptive fields
    • Rust, N. C., Schwartz, O., Movshon, J. A., & Simoncelli, E. P. (2005). Spatiotemporal elements of macaque V1 receptive fields. Neuron, 46, 945-956.
    • (2005) Neuron , vol.46 , pp. 945-956
    • Rust, N.C.1    Schwartz, O.2    Movshon, J.A.3    Simoncelli, E.P.4
  • 74
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 75
    • 2542438416 scopus 로고    scopus 로고
    • Characterization of neural responses with stochastic stimuli
    • M. S. Gazzaniga (Ed.)
    • Simoncelli, E. P., Paninski, L., Pillow, J., & Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.
    • (2004) The new cognitive neurosciences
    • Simoncelli, E.P.1    Paninski, L.2    Pillow, J.3    Schwartz, O.4
  • 77
    • 54449091582 scopus 로고    scopus 로고
    • A batch ensemble approach to active learning with model selection
    • Sugiyama, M., & Rubens, N. (2008). A batch ensemble approach to active learning with model selection. Neural Netw., 21, 1278-1286.
    • (2008) Neural Netw , vol.21 , pp. 1278-1286
    • Sugiyama, M.1    Rubens, N.2
  • 78
    • 0034653816 scopus 로고    scopus 로고
    • Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds
    • Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci., 20, 2315-2331.
    • (2000) J. Neurosci. , vol.20 , pp. 2315-2331
    • Theunissen, F.E.1    Sen, K.2    Doupe, A.J.3
  • 79
    • 9244224116 scopus 로고    scopus 로고
    • Multiple time scales of adaptation in auditory cortex neurons
    • Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440-10453.
    • (2004) Journal of Neuroscience , vol.24 , pp. 10440-10453
    • Ulanovsky, N.1    Las, L.2    Farkas, D.3    Nelken, I.4
  • 81
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Roy. Soc. B: Biol. Sci., 265, 359-366.
    • (1998) Proc. Roy. Soc. B: Biol. Sci. , vol.265 , pp. 359-366
    • van Hateren, J.H.1    van der Schaaf, A.2
  • 82
    • 33645557199 scopus 로고    scopus 로고
    • Do cortical neurons process luminance or contrast to encode surface properties?
    • Vladusich, T., Lucassen, M. P., & Cornelissen, F. W. (2006). Do cortical neurons process luminance or contrast to encode surface properties? J. Neurophysiol., 95, 2638-2649.
    • (2006) J Neurophysiol , vol.95 , pp. 2638-2649
    • Vladusich, T.1    Lucassen, M.P.2    Cornelissen, F.W.3
  • 83
    • 52649127324 scopus 로고    scopus 로고
    • Maximum differentiation (MAD) competition: A methodology for comparing computational models of perceptual quantitites
    • Wang, Z., & Simoncelli, E. P. (2008). Maximum differentiation (MAD) competition: A methodology for comparing computational models of perceptual quantitites. J. Vis., 8, 1-13.
    • (2008) J. Vis. , vol.8 , pp. 1-13
    • Wang, Z.1    Simoncelli, E.P.2
  • 84
    • 0020713980 scopus 로고
    • Quest: A Bayesian adaptive psychometric method
    • Watson, A. B., & Pelli, D. G. (1983). Quest: A Bayesian adaptive psychometric method. Percept. Psychophys., 33, 113-120.
    • (1983) Percept. Psychophys. , vol.33 , pp. 113-120
    • Watson, A.B.1    Pelli, D.G.2
  • 85
    • 23044508786 scopus 로고    scopus 로고
    • Synaptic mechanisms of forward suppression in rat auditory cortex
    • Wehr, M., & Zador, A. M. (2005). Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron, 47, 437-445.
    • (2005) Neuron , vol.47 , pp. 437-445
    • Wehr, M.1    Zador, A.M.2
  • 86
    • 33748355794 scopus 로고    scopus 로고
    • Complete functional characterization of sensory neurons by system identification
    • Wu,M. C., David, S. V., & Gallant, J. L. (2006). Complete functional characterization of sensory neurons by system identification. Ann. Rev. Neurosci., 29, 477-505.
    • (2006) Ann. Rev. Neurosci. , vol.29 , pp. 477-505
    • Wu, M.C.1    David, S.V.2    Gallant, J.L.3
  • 87
    • 54949090307 scopus 로고    scopus 로고
    • A neural code for three-dimensional shape in macaque inferotemporal cortex
    • Yamane, Y., Carlson, E. T., Bowman, K. C., Wang, Z., & Connor, C. E. (2008). A neural code for three-dimensional shape in macaque inferotemporal cortex. Nat. Neurosci, 11, 1352-1360.
    • (2008) Nat. Neurosci , vol.11 , pp. 1352-1360
    • Yamane, Y.1    Carlson, E.T.2    Bowman, K.C.3    Wang, Z.4    Connor, C.E.5
  • 88
    • 0345103733 scopus 로고    scopus 로고
    • Circuitry and function of the dorsal cochlear nucleus
    • D. Oertel, R. R. Fay, & A. N. Popper (Eds.), Berlin: Springer
    • Young, E. D., & Davis, K. A. (2002). Circuitry and function of the dorsal cochlear nucleus. In D. Oertel, R. R. Fay, & A. N. Popper (Eds.), Integrative functions of the mammalian auditory pathway. Berlin: Springer.
    • (2002) Integrative functions of the mammalian auditory pathway
    • Young, E.D.1    Davis, K.A.2
  • 89
    • 0034710869 scopus 로고    scopus 로고
    • Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus
    • Yu, J. J.,&Young, E.D. (2000). Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. Proc. Natl. Acad. Sci. USA, 97, 11780-11786.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 11780-11786
    • Yu, J.J.1    Young, E.D.2
  • 90
    • 0023877474 scopus 로고
    • A back-propagation programmed network that simulates the response properties of a subset of posterior parietal neurons
    • Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates the response properties of a subset of posterior parietal neurons. Nature, 331, 679-684.
    • (1988) Nature , vol.331 , pp. 679-684
    • Zipser, D.1    Andersen, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.