메뉴 건너뛰기




Volumn 15, Issue 7, 2015, Pages 16225-16247

Bearing fault diagnosis based on statistical locally linear embedding

Author keywords

Dimensionality reduction; Fault diagnosis; Feature extraction; High dimensional data; Manifold learning; Statistical locally linear embedding

Indexed keywords

BEARINGS (MACHINE PARTS); CLUSTERING ALGORITHMS; COMPUTER AIDED DIAGNOSIS; DATA MINING; DOMAIN DECOMPOSITION METHODS; EXTRACTION; FAILURE ANALYSIS; FEATURE EXTRACTION; FREQUENCY DOMAIN ANALYSIS; LEARNING ALGORITHMS; MACHINERY; PATTERN RECOGNITION; ROLLER BEARINGS; SIGNAL PROCESSING; TIME DOMAIN ANALYSIS; VECTOR SPACES;

EID: 84940174438     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s150716225     Document Type: Article
Times cited : (136)

References (40)
  • 1
    • 84885342190 scopus 로고    scopus 로고
    • Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
    • Chen, F.F.; Tang, B.P.; Song, T.; Li, L. Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization. Measurement 2014, 47, 576-590.
    • (2014) Measurement , vol.47 , pp. 576-590
    • Chen, F.F.1    Tang, B.P.2    Song, T.3    Li, L.4
  • 2
    • 84885661664 scopus 로고    scopus 로고
    • Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis
    • Jiang, L.; Xuan, J.P.; Shi, T.L. Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis. Mech. Syst. Sign. Process. 2013, 41, 113-126.
    • (2013) Mech. Syst. Sign. Process , vol.41 , pp. 113-126
    • Jiang, L.1    Xuan, J.P.2    Shi, T.L.3
  • 7
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong, D.; McAvoy, T.J. Nonlinear principal component analysis based on principal curves and neural networks. Comput. Chem. Eng. 1996, 20, 65-78.
    • (1996) Comput. Chem. Eng , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 8
    • 0034704189 scopus 로고    scopus 로고
    • The manifold ways of perception
    • Seung, H.S.; Daniel, D.L. The manifold ways of perception. Science 2000, 290, 2268-2269.
    • (2000) Science , vol.290 , pp. 2268-2269
    • Seung, H.S.1    Daniel, D.L.2
  • 9
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 10
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J.B.; Silva, V.D.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.D.2    Langford, J.C.3
  • 11
    • 14544307975 scopus 로고    scopus 로고
    • Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment
    • Zhang, Z.Y.; Zha, H.Y. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM J. Sci. Comput. 2004, 26, 313-338.
    • (2004) SIAM J. Sci. Comput , vol.26 , pp. 313-338
    • Zhang, Z.Y.1    Zha, H.Y.2
  • 12
    • 84881226895 scopus 로고    scopus 로고
    • Locally linear embedding (LLE) for MRI based Alzheimer's disease classification
    • Liu, X.; Tosun, D.; Weiner, M.W.; Schuff, N. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification. Neuroimage 2013, 83, 148-157.
    • (2013) Neuroimage , vol.83 , pp. 148-157
    • Liu, X.1    Tosun, D.2    Weiner, M.W.3    Schuff, N.4
  • 13
    • 33845729560 scopus 로고    scopus 로고
    • Face detection in gray scale images using locally linear embeddings
    • Kadoury, S.; Levine, M.D. Face detection in gray scale images using locally linear embeddings. Comput. Vis. Image Underst. 2007, 105, 1-20.
    • (2007) Comput. Vis. Image Underst. , vol.105 , pp. 1-20
    • Kadoury, S.1    Levine, M.D.2
  • 15
    • 84887020604 scopus 로고    scopus 로고
    • Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction
    • Kima, K.; Lee, J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction. Pattern Recognit. 2014, 47, 758-768.
    • (2014) Pattern Recognit , vol.47 , pp. 758-768
    • Kima, K.1    Lee, J.2
  • 16
    • 33749869630 scopus 로고    scopus 로고
    • Noise reduction method for nonlinear time series based on principal manifold learning and its application to fault diagnosis
    • Yang, J.H.; Xu, J.W.; Yang, D.B. Noise reduction method for nonlinear time series based on principal manifold learning and its application to fault diagnosis. Chin. J. Mech. Eng. 2006, 42, 154-158.
    • (2006) Chin. J. Mech. Eng. , vol.42 , pp. 154-158
    • Yang, J.H.1    Xu, J.W.2    Yang, D.B.3
  • 18
    • 84855229439 scopus 로고    scopus 로고
    • Locally linear embedding based on correntropy measure for visualization and classification
    • Genaro, D.S.; German, C.D.; Jose, C.P. Locally linear embedding based on correntropy measure for visualization and classification. Neurocomputing 2012, 80, 19-30.
    • (2012) Neurocomputing , vol.80 , pp. 19-30
    • Genaro, D.S.1    German, C.D.2    Jose, C.P.3
  • 19
    • 60349085626 scopus 로고    scopus 로고
    • Supervised locally linear embedding with probability-based distance for classification
    • Zhao, L.X.; Zhang, Z.Y. Supervised locally linear embedding with probability-based distance for classification. Comput. Math. Appl. 2009, 57, 919-926.
    • (2009) Comput. Math. Appl , vol.57 , pp. 919-926
    • Zhao, L.X.1    Zhang, Z.Y.2
  • 20
    • 84857059746 scopus 로고    scopus 로고
    • A supervised non-linear dimensionality reduction approach for manifold learning
    • Raducanu, B.; Dornaika, F. A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recognit. 2012, 45, 2432-2444.
    • (2012) Pattern Recognit , vol.45 , pp. 2432-2444
    • Raducanu, B.1    Dornaika, F.2
  • 21
    • 33747744133 scopus 로고    scopus 로고
    • Local structure based supervised feature extraction
    • Zhao, H.T.; Sun, S.Y.; Jing, Z.L. Local structure based supervised feature extraction. Pattern Recognit. 2006, 39, 1546-1550.
    • (2006) Pattern Recognit , vol.39 , pp. 1546-1550
    • Zhao, H.T.1    Sun, S.Y.2    Jing, Z.L.3
  • 22
    • 67349249907 scopus 로고    scopus 로고
    • Machinery fault diagnosis using supervised manifold learning
    • Jiang, Q.S.; Jia, M.P.; Hua, J.Z.; Xu, F.Y. Machinery fault diagnosis using supervised manifold learning. Mech. Syst. Sign. Process. 2009, 23, 2301-2311.
    • (2009) Mech. Syst. Sign. Process , vol.23 , pp. 2301-2311
    • Jiang, Q.S.1    Jia, M.P.2    Hua, J.Z.3    Xu, F.Y.4
  • 23
    • 84912523577 scopus 로고    scopus 로고
    • Fault diagnosis method using supervised extended local tangent space alignment for dimension reduction
    • Su, Z.Q.; Tang, B.P.; Deng, L.; Liu, Z. Fault diagnosis method using supervised extended local tangent space alignment for dimension reduction. Measurement 2015, 62, 1-14.
    • (2015) Measurement , vol.62 , pp. 1-14
    • Su, Z.Q.1    Tang, B.P.2    Deng, L.3    Liu, Z.4
  • 27
    • 77249173699 scopus 로고    scopus 로고
    • Application of mother wavelet functions for automatic gear and bearing fault diagnosis
    • Rafiee, J.; Rafiee, M.A.; Tse, P.W. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Syst. Appl. 2010, 37, 4568-4579.
    • (2010) Expert Syst. Appl , vol.37 , pp. 4568-4579
    • Rafiee, J.1    Rafiee, M.A.2    Tse, P.W.3
  • 28
    • 63849187550 scopus 로고    scopus 로고
    • A feature extraction method based on information theory for fault diagnosis of reciprocating machinery
    • Wang, H.; Chen, P. A feature extraction method based on information theory for fault diagnosis of reciprocating machinery. Sensors 2009, 9, 2415-2436.
    • (2009) Sensors , vol.9 , pp. 2415-2436
    • Wang, H.1    Chen, P.2
  • 29
    • 84859433314 scopus 로고    scopus 로고
    • Time-frequency data fusion technique with application to vibration signal analysis
    • Peng, Z.; Zhang, W.; Lang, Z.; Meng, G.; Chu, F. Time-frequency data fusion technique with application to vibration signal analysis. Mech. Syst. Sign. Process. 2011, 29, 164-173.
    • (2011) Mech. Syst. Sign. Process. , vol.29 , pp. 164-173
    • Peng, Z.1    Zhang, W.2    Lang, Z.3    Meng, G.4    Chu, F.5
  • 31
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • Lei, Y.G.; He, Z.J.; Zi, Y.Y. A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst. Appl. 2008, 35, 1593-1600.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1593-1600
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 32
    • 84860117464 scopus 로고    scopus 로고
    • Adaptive redundant lifting wavelet transform based on fitting for fault feature extraction of roller bearings
    • Yang, Z.; Cai, L.; Gao, L.; Wang, H. Adaptive redundant lifting wavelet transform based on fitting for fault feature extraction of roller bearings. Sensors 2012, 12, 4381-4398.
    • (2012) Sensors , vol.12 , pp. 4381-4398
    • Yang, Z.1    Cai, L.2    Gao, L.3    Wang, H.4
  • 33
    • 70350764824 scopus 로고    scopus 로고
    • Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means
    • Pan, Y.; Chen, J.; Li, X. Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means. Mech. Syst. Sign. Process. 2010, 24, 559-566.
    • (2010) Mech. Syst. Sign. Process. , vol.24 , pp. 559-566
    • Pan, Y.1    Chen, J.2    Li, X.3
  • 34
    • 84890013214 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
    • Lei, Y.G.; Li, N.P.; Lin, J.; Wang, S.Z. Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition. Sensors 2013, 13, 16950-16964.
    • (2013) Sensors , vol.13 , pp. 16950-16964
    • Lei, Y.G.1    Li, N.P.2    Lin, J.3    Wang, S.Z.4
  • 35
    • 81855201771 scopus 로고    scopus 로고
    • A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM
    • Shen, Z.J.; Chen, X.F. Zhang, X.L.; He, Z.J. A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM. Measurement 2012, 45, 30-40.
    • (2012) Measurement , vol.45 , pp. 30-40
    • Shen, Z.J.1    Chen, X.F.2    Zhang, X.L.3    He, Z.J.4
  • 36
    • 37349079091 scopus 로고    scopus 로고
    • Case Western Reserve University. (accessed on 20 July 2012)
    • Loparo, K. Bearings Vibration Data Set, Case Western Reserve University. Available online: http://www.eecs.case.edu/laboratory/bearing/welcome_overview.htm (accessed on 20 July 2012).
    • Bearings Vibration Data Set
    • Loparo, K.1
  • 37
    • 84857063471 scopus 로고    scopus 로고
    • Inchoate fault detection framework: Adaptive selection of wavelet nodes and cumulant orders
    • Yaqub, M.; Gondal, I.; Kamruzzaman, J. Inchoate fault detection framework: Adaptive selection of wavelet nodes and cumulant orders. IEEE Trans. Instrum. Measur. 2012, 61, 685-695.
    • (2012) IEEE Trans. Instrum. Measur. , vol.61 , pp. 685-695
    • Yaqub, M.1    Gondal, I.2    Kamruzzaman, J.3
  • 38
    • 79952452396 scopus 로고    scopus 로고
    • Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization
    • Li, B.; Zhang, P.; Liu, D.; Mi, S.; Ren, G.; Tian, H. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. J. Sound Vibr. 2011, 330, 2388-2399.
    • (2011) J. Sound Vibr. , vol.330 , pp. 2388-2399
    • Li, B.1    Zhang, P.2    Liu, D.3    Mi, S.4    Ren, G.5    Tian, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.