-
1
-
-
0035225871
-
Regulation of translation initiation by amino acids in eukaryotic cells
-
Kimball, S. R. (2001) Regulation of translation initiation by amino acids in eukaryotic cells. Prog. Mol. Subcell. Biol. 26, 155-184
-
(2001)
Prog. Mol. Subcell. Biol
, vol.26
, pp. 155-184
-
-
Kimball, S.R.1
-
2
-
-
84891438317
-
Control of the translational machinery by amino acids
-
Proud, C. G. (2014) Control of the translational machinery by amino acids. Am. J. Clin. Nutr. 99, 231S-236S
-
(2014)
Am. J. Clin. Nutr.
, vol.99
, pp. 231S-236S
-
-
Proud, C.G.1
-
3
-
-
0028695223
-
The eIF-2 α kinases: Regulators of protein synthesis in starvation and stress
-
Hinnebusch, A. G. (1994) The eIF-2 α kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5, 417- 426
-
(1994)
Semin. Cell Biol
, vol.5
, pp. 417-426
-
-
Hinnebusch, A.G.1
-
4
-
-
79959409830
-
Amino acid signaling in TOR activation
-
Kim, J., and Guan, K. L. (2011) Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80, 1001-1032
-
(2011)
Annu. Rev. Biochem
, vol.80
, pp. 1001-1032
-
-
Kim, J.1
Guan, K.L.2
-
5
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell, J. L., Russell, R. C., and Guan, K. L. (2013) Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133-139
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
Russell, R.C.2
Guan, K.L.3
-
6
-
-
0029785485
-
Histidyl-tRNA synthetaserelated sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2
-
Zhu, S., Sobolev, A. Y., and Wek, R. C. (1996) Histidyl-tRNA synthetaserelated sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J. Biol. Chem. 271, 24989-24994
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 24989-24994
-
-
Zhu, S.1
Sobolev, A.Y.2
Wek, R.C.3
-
7
-
-
0033635215
-
Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain
-
Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J., and Hinnebusch, A. G. (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6, 269-279
-
(2000)
Mol. Cell
, vol.6
, pp. 269-279
-
-
Dong, J.1
Qiu, H.2
Garcia-Barrio, M.3
Anderson, J.4
Hinnebusch, A.G.5
-
8
-
-
0026556814
-
Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
-
Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G. (1992) Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585-596
-
(1992)
Cell
, vol.68
, pp. 585-596
-
-
Dever, T.E.1
Feng, L.2
Wek, R.C.3
Cigan, A.M.4
Donahue, T.F.5
Hinnebusch, A.G.6
-
9
-
-
84884353774
-
The eIF2α kinases: Their structures and functions
-
Donnelly, N., Gorman, A. M., Gupta, S., and Samali, A. (2013) The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493-3511
-
(2013)
Cell. Mol. Life Sci
, vol.70
, pp. 3493-3511
-
-
Donnelly, N.1
Gorman, A.M.2
Gupta, S.3
Samali, A.4
-
10
-
-
1842287951
-
Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2
-
Marton, M. J., Vazquez de Aldana, C. R., Qiu, H., Chakraburtty, K., and Hinnebusch, A. G. (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2. Mol. Cell. Biol. 17, 4474-4489
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 4474-4489
-
-
Marton, M.J.1
De Vazquez Aldana, C.R.2
Qiu, H.3
Chakraburtty, K.4
Hinnebusch, A.G.5
-
11
-
-
0034678890
-
Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2α kinase GCN2 is required for GCN2 activation
-
Garcia-Barrio, M., Dong, J., Ufano, S., and Hinnebusch, A. G. (2000) Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2α kinase GCN2 is required for GCN2 activation. EMBO J. 19, 1887-1899
-
(2000)
EMBO J
, vol.19
, pp. 1887-1899
-
-
Garcia-Barrio, M.1
Dong, J.2
Ufano, S.3
Hinnebusch, A.G.4
-
12
-
-
0027175499
-
GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2
-
Marton, M. J., Crouch, D., and Hinnebusch, A. G. (1993) GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13, 3541-3556
-
(1993)
Mol. Cell. Biol
, vol.13
, pp. 3541-3556
-
-
Marton, M.J.1
Crouch, D.2
Hinnebusch, A.G.3
-
13
-
-
0035907288
-
Budding yeast GCN1 binds the GI domain to activate the eIF2α kinase GCN2
-
Kubota, H., Ota, K., Sakaki, Y., and Ito, T. (2001) Budding yeast GCN1 binds the GI domain to activate the eIF2α kinase GCN2. J. Biol. Chem. 276, 17591-17596
-
(2001)
J. Biol. Chem
, vol.276
, pp. 17591-17596
-
-
Kubota, H.1
Ota, K.2
Sakaki, Y.3
Ito, T.4
-
14
-
-
0029001571
-
GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 α kinase GCN2 in amino acid-starved cells
-
Vazquez de Aldana, C. R., Marton, M. J., and Hinnebusch, A. G. (1995) GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 α kinase GCN2 in amino acid-starved cells. EMBO J. 14, 3184-3199
-
(1995)
EMBO J.
, vol.14
, pp. 3184-3199
-
-
De Aldana, V.1
Marton, M.J.2
Hinnebusch, A.G.3
-
15
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma, X. M., and Blenis, J. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
16
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457- 468
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
17
-
-
80054726081
-
Nutritional control of cell growth via TOR signaling in budding yeast
-
Wei, Y., and Zheng, X. F. (2011) Nutritional control of cell growth via TOR signaling in budding yeast. Methods Mol. Biol. 759, 307-319
-
(2011)
Methods Mol. Biol
, vol.759
, pp. 307-319
-
-
Wei, Y.1
Zheng, X.F.2
-
18
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
19
-
-
2442605728
-
TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae
-
Reinke, A., Anderson, S., McCaffery, J. M., Yates, J., 3rd, Aronova, S., Chu, S., Fairclough, S., Iverson, C., Wedaman, K. P., and Powers, T. (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 14752-14762
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 14752-14762
-
-
Reinke, A.1
Anderson, S.2
McCaffery, J.M.3
Yates, J.4
Aronova, S.5
Chu, S.6
Fairclough, S.7
Iverson, C.8
Wedaman, K.P.9
Powers, T.10
-
20
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
21
-
-
56449130276
-
MTOR signaling: RAG GTPases transmit the amino acid signal
-
Shaw, R. J. (2008) mTOR signaling: RAG GTPases transmit the amino acid signal. Trends Biochem. Sci. 33, 565-568
-
(2008)
Trends Biochem. Sci
, vol.33
, pp. 565-568
-
-
Shaw, R.J.1
-
22
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils, G., Jaquenoud, M., Bontron, S., Ostrowicz, C., Ungermann, C., and De Virgilio, C. (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105-110
-
(2012)
Mol. Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
De Virgilio, C.6
-
23
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E., and De Virgilio, C. (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15-26
-
(2005)
Mol. Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
24
-
-
33745745910
-
A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
-
Gao, M., and Kaiser, C. A. (2006) A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 8, 657-667
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 657-667
-
-
Gao, M.1
Kaiser, C.A.2
-
25
-
-
69749113579
-
The Vam6 GEF controls TORC1 by activating the EGO complex
-
Binda, M., Péli-Gulli, M. P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T. W., Loewith, R., and De Virgilio, C. (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563-573
-
(2009)
Mol. Cell
, vol.35
, pp. 563-573
-
-
Binda, M.1
Péli-Gulli, M.P.2
Bonfils, G.3
Panchaud, N.4
Urban, J.5
Sturgill, T.W.6
Loewith, R.7
De Virgilio, C.8
-
26
-
-
84862776556
-
The TOR complex 1 is a direct target of Rho1 GTPase
-
Yan, G., Lai, Y., and Jiang, Y. (2012) The TOR complex 1 is a direct target of Rho1 GTPase. Mol. Cell 45, 743-753
-
(2012)
Mol. Cell
, vol.45
, pp. 743-753
-
-
Yan, G.1
Lai, Y.2
Jiang, Y.3
-
27
-
-
0041320898
-
The role of phosphatases in TOR signaling in yeast
-
Düvel, K., and Broach, J. R. (2004) The role of phosphatases in TOR signaling in yeast. Curr. Top. Microbiol. Immunol. 279, 19-38
-
(2004)
Curr. Top. Microbiol. Immunol
, vol.279
, pp. 19-38
-
-
Düvel, K.1
Broach, J.R.2
-
28
-
-
34347256711
-
TOR signaling and S6 kinase 1: Yeast catches up
-
Powers, T. (2007) TOR signaling and S6 kinase 1: yeast catches up. Cell Metab. 6, 1-2
-
(2007)
Cell Metab
, vol.6
, pp. 1-2
-
-
Powers, T.1
-
29
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., Broach, J. R., De Virgilio, C., Hall, M. N., and Loewith, R. (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663-674
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
30
-
-
17344381954
-
Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
-
Düvel, K., Santhanam, A., Garrett, S., Schneper, L., and Broach, J. R. (2003) Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell 11, 1467-1478
-
(2003)
Mol. Cell
, vol.11
, pp. 1467-1478
-
-
Düvel, K.1
Santhanam, A.2
Garrett, S.3
Schneper, L.4
Broach, J.R.5
-
31
-
-
0034649569
-
Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins
-
Shamji, A. F., Kuruvilla, F. G., and Schreiber, S. L. (2000) Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10, 1574-1581
-
(2000)
Curr. Biol
, vol.10
, pp. 1574-1581
-
-
Shamji, A.F.1
Kuruvilla, F.G.2
Schreiber, S.L.3
-
32
-
-
33747626107
-
Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1
-
Yan, G., Shen, X., and Jiang, Y. (2006) Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J. 25, 3546-3555
-
(2006)
EMBO J
, vol.25
, pp. 3546-3555
-
-
Yan, G.1
Shen, X.2
Jiang, Y.3
-
33
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
-
Beck, T., and Hall, M. N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692
-
(1999)
Nature
, vol.402
, pp. 689-692
-
-
Beck, T.1
Hall, M.N.2
-
34
-
-
0034680772
-
Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases
-
Bertram, P. G., Choi, J. H., Carvalho, J., Ai, W., Zeng, C., Chan, T. F., and Zheng, X. F. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J. Biol. Chem. 275, 35727-35733
-
(2000)
J. Biol. Chem
, vol.275
, pp. 35727-35733
-
-
Bertram, P.G.1
Choi, J.H.2
Carvalho, J.3
Ai, W.4
Zeng, C.5
Chan, T.F.6
Zheng, X.F.7
-
35
-
-
0037382865
-
Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2
-
Cherkasova, V. A., and Hinnebusch, A. G. (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2. Genes Dev. 17, 859-872
-
(2003)
Genes Dev
, vol.17
, pp. 859-872
-
-
Cherkasova, V.A.1
Hinnebusch, A.G.2
-
36
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han, J. M., Jeong, S. J., Park, M. C., Kim, G., Kwon, N. H., Kim, H. K., Ha, S. H., Ryu, S. H., and Kim, S. (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
Ha, S.H.7
Ryu, S.H.8
Kim, S.9
-
37
-
-
84865041393
-
Leucyl-tRNA synthetase: Double duty in amino acid sensing
-
Durán, R. V., and Hall, M. N. (2012) Leucyl-tRNA synthetase: double duty in amino acid sensing. Cell Res. 22, 1207-1209
-
(2012)
Cell Res
, vol.22
, pp. 1207-1209
-
-
Durán, R.V.1
Hall, M.N.2
-
38
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
-
Panchaud, N., Péli-Gulli, M. P., and De Virgilio, C. (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42
-
(2013)
Sci. Signal.
, vol.6
, pp. ra42
-
-
Panchaud, N.1
Péli-Gulli, M.P.2
De Virgilio, C.3
-
39
-
-
61949387423
-
Biochemical methods to monitor autophagy-related processes in yeast
-
Cheong, H., and Klionsky, D. J. (2008) Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol. 451, 1-26
-
(2008)
Methods Enzymol
, vol.451
, pp. 1-26
-
-
Cheong, H.1
Klionsky, D.J.2
-
40
-
-
0035869040
-
The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation
-
Qiu, H., Dong, J., Hu, C., Francklyn, C. S., and Hinnebusch, A. G. (2001) The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J. 20, 1425-1438
-
(2001)
EMBO J
, vol.20
, pp. 1425-1438
-
-
Qiu, H.1
Dong, J.2
Hu, C.3
Francklyn, C.S.4
Hinnebusch, A.G.5
-
41
-
-
0028579725
-
Translational control during amino acid starvation
-
Pain, V. M. (1994) Translational control during amino acid starvation. Biochimie 76, 718-728
-
(1994)
Biochimie
, vol.76
, pp. 718-728
-
-
Pain, V.M.1
-
42
-
-
59749092212
-
Translational responses to growth factors and stress
-
Cully, M., and Downward, J. (2009) Translational responses to growth factors and stress. Biochem. Soc. Trans. 37, 284-288
-
(2009)
Biochem. Soc. Trans
, vol.37
, pp. 284-288
-
-
Cully, M.1
Downward, J.2
-
43
-
-
34547169439
-
Structure of TOR and its complex with KOG1
-
Adami, A., García-Alvarez, B., Arias-Palomo, E., Barford, D., and Llorca, O. (2007) Structure of TOR and its complex with KOG1. Mol. Cell 27, 509-516
-
(2007)
Mol. Cell
, vol.27
, pp. 509-516
-
-
Adami, A.1
García-Alvarez, B.2
Arias-Palomo, E.3
Barford, D.4
Llorca, O.5
-
44
-
-
0037163037
-
Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2α kinase activities of GCN2
-
Garcia-Barrio, M., Dong, J., Cherkasova, V. A., Zhang, X., Zhang, F., Ufano, S., Lai, R., Qin, J., and Hinnebusch, A. G. (2002) Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2α kinase activities of GCN2. J. Biol. Chem. 277, 30675-30683
-
(2002)
J. Biol. Chem
, vol.277
, pp. 30675-30683
-
-
Garcia-Barrio, M.1
Dong, J.2
Cherkasova, V.A.3
Zhang, X.4
Zhang, F.5
Ufano, S.6
Lai, R.7
Qin, J.8
Hinnebusch, A.G.9
-
45
-
-
0033534686
-
Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation
-
Iiboshi, Y., Papst, P. J., Kawasome, H., Hosoi, H., Abraham, R. T., Houghton, P. J., and Terada, N. (1999) Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J. Biol. Chem. 274, 1092-1099
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 1092-1099
-
-
Iiboshi, Y.1
Papst, P.J.2
Kawasome, H.3
Hosoi, H.4
Abraham, R.T.5
Houghton, P.J.6
Terada, N.7
-
46
-
-
79952374033
-
Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways
-
Xiao, F., Huang, Z., Li, H., Yu, J., Wang, C., Chen, S., Meng, Q., Cheng, Y., Gao, X., Li, J., Liu, Y., and Guo, F. (2011) Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes 60, 746-756
-
(2011)
Diabetes
, vol.60
, pp. 746-756
-
-
Xiao, F.1
Huang, Z.2
Li, H.3
Yu, J.4
Wang, C.5
Chen, S.6
Meng, Q.7
Cheng, Y.8
Gao, X.9
Li, J.10
Liu, Y.11
Guo, F.12
-
47
-
-
4344650113
-
Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2
-
Anthony, T. G., McDaniel, B. J., Byerley, R. L., McGrath, B. C., Cavener, D. R., McNurlan, M. A., and Wek, R. C. (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J. Biol. Chem. 279, 36553-36561
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 36553-36561
-
-
Anthony, T.G.1
McDaniel, B.J.2
Byerley, R.L.3
McGrath, B.C.4
Cavener, D.R.5
McNurlan, M.A.6
Wek, R.C.7
-
48
-
-
0035661648
-
Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris
-
Guan, J., Stromhaug, P. E., George, M. D., Habibzadegah-Tari, P., Bevan, A., Dunn, W. A., Jr., and Klionsky, D. J. (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell 12, 3821-3838
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 3821-3838
-
-
Guan, J.1
Stromhaug, P.E.2
George, M.D.3
Habibzadegah-Tari, P.4
Bevan, A.5
Dunn, A.W.6
Klionsky, D.J.7
|