메뉴 건너뛰기




Volumn 292, Issue 7, 2017, Pages 2660-2669

General control nonderepressible 2 (GCN2) kinase inhibits target of rapamycin complex 1 in response to amino acid starvation in saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

BIOSYNTHESIS; ENZYMES; PROTEINS; YEAST;

EID: 85013278149     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M116.772194     Document Type: Article
Times cited : (44)

References (48)
  • 1
    • 0035225871 scopus 로고    scopus 로고
    • Regulation of translation initiation by amino acids in eukaryotic cells
    • Kimball, S. R. (2001) Regulation of translation initiation by amino acids in eukaryotic cells. Prog. Mol. Subcell. Biol. 26, 155-184
    • (2001) Prog. Mol. Subcell. Biol , vol.26 , pp. 155-184
    • Kimball, S.R.1
  • 2
    • 84891438317 scopus 로고    scopus 로고
    • Control of the translational machinery by amino acids
    • Proud, C. G. (2014) Control of the translational machinery by amino acids. Am. J. Clin. Nutr. 99, 231S-236S
    • (2014) Am. J. Clin. Nutr. , vol.99 , pp. 231S-236S
    • Proud, C.G.1
  • 3
    • 0028695223 scopus 로고
    • The eIF-2 α kinases: Regulators of protein synthesis in starvation and stress
    • Hinnebusch, A. G. (1994) The eIF-2 α kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5, 417- 426
    • (1994) Semin. Cell Biol , vol.5 , pp. 417-426
    • Hinnebusch, A.G.1
  • 4
    • 79959409830 scopus 로고    scopus 로고
    • Amino acid signaling in TOR activation
    • Kim, J., and Guan, K. L. (2011) Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80, 1001-1032
    • (2011) Annu. Rev. Biochem , vol.80 , pp. 1001-1032
    • Kim, J.1    Guan, K.L.2
  • 6
    • 0029785485 scopus 로고    scopus 로고
    • Histidyl-tRNA synthetaserelated sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2
    • Zhu, S., Sobolev, A. Y., and Wek, R. C. (1996) Histidyl-tRNA synthetaserelated sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J. Biol. Chem. 271, 24989-24994
    • (1996) J. Biol. Chem. , vol.271 , pp. 24989-24994
    • Zhu, S.1    Sobolev, A.Y.2    Wek, R.C.3
  • 7
    • 0033635215 scopus 로고    scopus 로고
    • Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain
    • Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J., and Hinnebusch, A. G. (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6, 269-279
    • (2000) Mol. Cell , vol.6 , pp. 269-279
    • Dong, J.1    Qiu, H.2    Garcia-Barrio, M.3    Anderson, J.4    Hinnebusch, A.G.5
  • 8
    • 0026556814 scopus 로고
    • Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
    • Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G. (1992) Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585-596
    • (1992) Cell , vol.68 , pp. 585-596
    • Dever, T.E.1    Feng, L.2    Wek, R.C.3    Cigan, A.M.4    Donahue, T.F.5    Hinnebusch, A.G.6
  • 10
    • 1842287951 scopus 로고    scopus 로고
    • Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2
    • Marton, M. J., Vazquez de Aldana, C. R., Qiu, H., Chakraburtty, K., and Hinnebusch, A. G. (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2. Mol. Cell. Biol. 17, 4474-4489
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4474-4489
    • Marton, M.J.1    De Vazquez Aldana, C.R.2    Qiu, H.3    Chakraburtty, K.4    Hinnebusch, A.G.5
  • 11
    • 0034678890 scopus 로고    scopus 로고
    • Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2α kinase GCN2 is required for GCN2 activation
    • Garcia-Barrio, M., Dong, J., Ufano, S., and Hinnebusch, A. G. (2000) Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2α kinase GCN2 is required for GCN2 activation. EMBO J. 19, 1887-1899
    • (2000) EMBO J , vol.19 , pp. 1887-1899
    • Garcia-Barrio, M.1    Dong, J.2    Ufano, S.3    Hinnebusch, A.G.4
  • 12
    • 0027175499 scopus 로고
    • GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2
    • Marton, M. J., Crouch, D., and Hinnebusch, A. G. (1993) GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13, 3541-3556
    • (1993) Mol. Cell. Biol , vol.13 , pp. 3541-3556
    • Marton, M.J.1    Crouch, D.2    Hinnebusch, A.G.3
  • 13
    • 0035907288 scopus 로고    scopus 로고
    • Budding yeast GCN1 binds the GI domain to activate the eIF2α kinase GCN2
    • Kubota, H., Ota, K., Sakaki, Y., and Ito, T. (2001) Budding yeast GCN1 binds the GI domain to activate the eIF2α kinase GCN2. J. Biol. Chem. 276, 17591-17596
    • (2001) J. Biol. Chem , vol.276 , pp. 17591-17596
    • Kubota, H.1    Ota, K.2    Sakaki, Y.3    Ito, T.4
  • 14
    • 0029001571 scopus 로고
    • GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 α kinase GCN2 in amino acid-starved cells
    • Vazquez de Aldana, C. R., Marton, M. J., and Hinnebusch, A. G. (1995) GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 α kinase GCN2 in amino acid-starved cells. EMBO J. 14, 3184-3199
    • (1995) EMBO J. , vol.14 , pp. 3184-3199
    • De Aldana, V.1    Marton, M.J.2    Hinnebusch, A.G.3
  • 15
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma, X. M., and Blenis, J. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 17
    • 80054726081 scopus 로고    scopus 로고
    • Nutritional control of cell growth via TOR signaling in budding yeast
    • Wei, Y., and Zheng, X. F. (2011) Nutritional control of cell growth via TOR signaling in budding yeast. Methods Mol. Biol. 759, 307-319
    • (2011) Methods Mol. Biol , vol.759 , pp. 307-319
    • Wei, Y.1    Zheng, X.F.2
  • 18
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 19
    • 2442605728 scopus 로고    scopus 로고
    • TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae
    • Reinke, A., Anderson, S., McCaffery, J. M., Yates, J., 3rd, Aronova, S., Chu, S., Fairclough, S., Iverson, C., Wedaman, K. P., and Powers, T. (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 14752-14762
    • (2004) J. Biol. Chem. , vol.279 , pp. 14752-14762
    • Reinke, A.1    Anderson, S.2    McCaffery, J.M.3    Yates, J.4    Aronova, S.5    Chu, S.6    Fairclough, S.7    Iverson, C.8    Wedaman, K.P.9    Powers, T.10
  • 21
    • 56449130276 scopus 로고    scopus 로고
    • MTOR signaling: RAG GTPases transmit the amino acid signal
    • Shaw, R. J. (2008) mTOR signaling: RAG GTPases transmit the amino acid signal. Trends Biochem. Sci. 33, 565-568
    • (2008) Trends Biochem. Sci , vol.33 , pp. 565-568
    • Shaw, R.J.1
  • 23
    • 21244448694 scopus 로고    scopus 로고
    • The TOR and EGO protein complexes orchestrate microautophagy in yeast
    • Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E., and De Virgilio, C. (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15-26
    • (2005) Mol. Cell , vol.19 , pp. 15-26
    • Dubouloz, F.1    Deloche, O.2    Wanke, V.3    Cameroni, E.4    De Virgilio, C.5
  • 24
    • 33745745910 scopus 로고    scopus 로고
    • A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
    • Gao, M., and Kaiser, C. A. (2006) A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 8, 657-667
    • (2006) Nat. Cell Biol , vol.8 , pp. 657-667
    • Gao, M.1    Kaiser, C.A.2
  • 26
    • 84862776556 scopus 로고    scopus 로고
    • The TOR complex 1 is a direct target of Rho1 GTPase
    • Yan, G., Lai, Y., and Jiang, Y. (2012) The TOR complex 1 is a direct target of Rho1 GTPase. Mol. Cell 45, 743-753
    • (2012) Mol. Cell , vol.45 , pp. 743-753
    • Yan, G.1    Lai, Y.2    Jiang, Y.3
  • 27
    • 0041320898 scopus 로고    scopus 로고
    • The role of phosphatases in TOR signaling in yeast
    • Düvel, K., and Broach, J. R. (2004) The role of phosphatases in TOR signaling in yeast. Curr. Top. Microbiol. Immunol. 279, 19-38
    • (2004) Curr. Top. Microbiol. Immunol , vol.279 , pp. 19-38
    • Düvel, K.1    Broach, J.R.2
  • 28
    • 34347256711 scopus 로고    scopus 로고
    • TOR signaling and S6 kinase 1: Yeast catches up
    • Powers, T. (2007) TOR signaling and S6 kinase 1: yeast catches up. Cell Metab. 6, 1-2
    • (2007) Cell Metab , vol.6 , pp. 1-2
    • Powers, T.1
  • 30
    • 17344381954 scopus 로고    scopus 로고
    • Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
    • Düvel, K., Santhanam, A., Garrett, S., Schneper, L., and Broach, J. R. (2003) Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell 11, 1467-1478
    • (2003) Mol. Cell , vol.11 , pp. 1467-1478
    • Düvel, K.1    Santhanam, A.2    Garrett, S.3    Schneper, L.4    Broach, J.R.5
  • 31
    • 0034649569 scopus 로고    scopus 로고
    • Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins
    • Shamji, A. F., Kuruvilla, F. G., and Schreiber, S. L. (2000) Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10, 1574-1581
    • (2000) Curr. Biol , vol.10 , pp. 1574-1581
    • Shamji, A.F.1    Kuruvilla, F.G.2    Schreiber, S.L.3
  • 32
    • 33747626107 scopus 로고    scopus 로고
    • Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1
    • Yan, G., Shen, X., and Jiang, Y. (2006) Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J. 25, 3546-3555
    • (2006) EMBO J , vol.25 , pp. 3546-3555
    • Yan, G.1    Shen, X.2    Jiang, Y.3
  • 33
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck, T., and Hall, M. N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 35
    • 0037382865 scopus 로고    scopus 로고
    • Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2
    • Cherkasova, V. A., and Hinnebusch, A. G. (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2. Genes Dev. 17, 859-872
    • (2003) Genes Dev , vol.17 , pp. 859-872
    • Cherkasova, V.A.1    Hinnebusch, A.G.2
  • 36
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • Han, J. M., Jeong, S. J., Park, M. C., Kim, G., Kwon, N. H., Kim, H. K., Ha, S. H., Ryu, S. H., and Kim, S. (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3    Kim, G.4    Kwon, N.H.5    Kim, H.K.6    Ha, S.H.7    Ryu, S.H.8    Kim, S.9
  • 37
    • 84865041393 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase: Double duty in amino acid sensing
    • Durán, R. V., and Hall, M. N. (2012) Leucyl-tRNA synthetase: double duty in amino acid sensing. Cell Res. 22, 1207-1209
    • (2012) Cell Res , vol.22 , pp. 1207-1209
    • Durán, R.V.1    Hall, M.N.2
  • 38
    • 84878353147 scopus 로고    scopus 로고
    • Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
    • Panchaud, N., Péli-Gulli, M. P., and De Virgilio, C. (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42
    • (2013) Sci. Signal. , vol.6 , pp. ra42
    • Panchaud, N.1    Péli-Gulli, M.P.2    De Virgilio, C.3
  • 39
    • 61949387423 scopus 로고    scopus 로고
    • Biochemical methods to monitor autophagy-related processes in yeast
    • Cheong, H., and Klionsky, D. J. (2008) Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol. 451, 1-26
    • (2008) Methods Enzymol , vol.451 , pp. 1-26
    • Cheong, H.1    Klionsky, D.J.2
  • 40
    • 0035869040 scopus 로고    scopus 로고
    • The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation
    • Qiu, H., Dong, J., Hu, C., Francklyn, C. S., and Hinnebusch, A. G. (2001) The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J. 20, 1425-1438
    • (2001) EMBO J , vol.20 , pp. 1425-1438
    • Qiu, H.1    Dong, J.2    Hu, C.3    Francklyn, C.S.4    Hinnebusch, A.G.5
  • 41
    • 0028579725 scopus 로고
    • Translational control during amino acid starvation
    • Pain, V. M. (1994) Translational control during amino acid starvation. Biochimie 76, 718-728
    • (1994) Biochimie , vol.76 , pp. 718-728
    • Pain, V.M.1
  • 42
    • 59749092212 scopus 로고    scopus 로고
    • Translational responses to growth factors and stress
    • Cully, M., and Downward, J. (2009) Translational responses to growth factors and stress. Biochem. Soc. Trans. 37, 284-288
    • (2009) Biochem. Soc. Trans , vol.37 , pp. 284-288
    • Cully, M.1    Downward, J.2
  • 45
    • 0033534686 scopus 로고    scopus 로고
    • Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation
    • Iiboshi, Y., Papst, P. J., Kawasome, H., Hosoi, H., Abraham, R. T., Houghton, P. J., and Terada, N. (1999) Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J. Biol. Chem. 274, 1092-1099
    • (1999) J. Biol. Chem. , vol.274 , pp. 1092-1099
    • Iiboshi, Y.1    Papst, P.J.2    Kawasome, H.3    Hosoi, H.4    Abraham, R.T.5    Houghton, P.J.6    Terada, N.7
  • 47
    • 4344650113 scopus 로고    scopus 로고
    • Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2
    • Anthony, T. G., McDaniel, B. J., Byerley, R. L., McGrath, B. C., Cavener, D. R., McNurlan, M. A., and Wek, R. C. (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J. Biol. Chem. 279, 36553-36561
    • (2004) J. Biol. Chem. , vol.279 , pp. 36553-36561
    • Anthony, T.G.1    McDaniel, B.J.2    Byerley, R.L.3    McGrath, B.C.4    Cavener, D.R.5    McNurlan, M.A.6    Wek, R.C.7
  • 48
    • 0035661648 scopus 로고    scopus 로고
    • Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris
    • Guan, J., Stromhaug, P. E., George, M. D., Habibzadegah-Tari, P., Bevan, A., Dunn, W. A., Jr., and Klionsky, D. J. (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell 12, 3821-3838
    • (2001) Mol. Biol. Cell , vol.12 , pp. 3821-3838
    • Guan, J.1    Stromhaug, P.E.2    George, M.D.3    Habibzadegah-Tari, P.4    Bevan, A.5    Dunn, A.W.6    Klionsky, D.J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.